

ALAGAPPA UNIVERSITY
(Accredited with ‘A+’ Grade by NAAC (with CGPA: 3.64) in the Third Cycle and

Graded as category - I University by MHRD-UGC)

(A State University Established by the Government of Tamilnadu)

KARAIKUDI – 630 003

DIRECTORATE OF DISTANCE EDUCATION

B.COM. (COMPUTER APPLICATIONS)

 123 32

SECOND YEAR – THIRD SEMESTER

PRINCIPLES OF C PROGRAMMING

Copy Right Reserved For Private Use only

Author :

Dr. K. Sivakumar,

Associate Professor & Head,

Department of Computer Applications,

Park’s College (Autonomous),

Tirupur- 641 605.

Reviewer:

Dr. P. Prabhu,

Assistant Professor in Information Technology,

Directorate of Distance Education

Alagappa University,

Karaikudi.

“The Copyright shall be vested with Alagappa University”

All rights reserved. No part of this publication which is material protected by this copyright notice may be

reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented,

electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or

retrieval system, without prior written permission from the Alagappa University, Karaikudi, Tamil Nadu.

Syllabi PAGE NO

BLOCK I: PROGRAMMING CONCEPTS & C LANGUAGE

UNIT - I:

Principles of programming - Programming - Programming Domain - Scientific

Application - Business Applications - Artificial Intelligence - Systems Programming -

Web Software Categories of Programming Languages - Machine Level Languages -

Assembly Level Languages - High Level Languages Programming Design Methodologies

- Top Down and Bottom UP Program Development Cycle with case study

- Program Execution and Translation Process -Problem solving using Algorithms

and Flowcharts - Performance Analysis and Measurements - Time and Space complexity.

1-12

UNIT - II:

C Programming - Features of C and its Basic Structure - Simple C programs – Constants -

Integer Constants - Real Constants - Character Constants - String Constants - Backslash

Character Constants - Concept of an Integer and Variable - Rules for naming Variables

and assigning values to variables.

13-20

UNIT - III:

Operators and Expressions - Arithmetic Operators - Unary Operators - Relational and

Logical Operators - The Conditional Operator - Library Functions - Bitwise Operators -

The Increment and Decrement Operators - The Size of Operator - Precedence of

operators.

21-30

UNIT - IV:

Data Types and Input/output Operators – Floating - point Numbers - Converting Integers

to Floating-point and vice-versa - Mixed-mode Expressions - The type cast Operator - The

type char - Keywords - Character Input and Output - Formatted input and output - The

gets() and puts() functions - Interactive Programming.

31-40

BLOCK II: BASICS OF OPERATOR AND DATATYPES

UNIT - V:

Control Statements and Decision Making - The go to statement - The if statement - The if-

else statement - Nesting of if statements - The conditional expression -The switch

statement - The while loop - The do…while loop - The for loop - The nesting of for loops

- The break statement and continue statement.

41-55

UNIT - VI:

Arrays and Strings - One Dimensional Array - Passing Arrays to Functions -

Multidimensional Arrays – Strings.

56-65

UNIT - VII:

Pointers – I - Basics of Pointers - Pointers and One-dimensional Arrays - Pointer

Arithmetic - Pointer Subtraction and Comparison - Similarities between Pointers and One-

dimensional Arrays.

66-73

UNIT - VIII:

 Pointers – II - Null pointers - Pointers and Strings - Pointers and two - dimensional arrays

- Arrays of Pointers.

74-79

Syllabi

PAGE NO

BLOCK III: ARRAY CONCEPTS, POINTERS & FUNCTION

UNIT - IX:

Structures and Unions - Basics of Structures - Arrays of Structures - Pointers to Structures

- Self-referential Structures - Unions.

80-87

UNIT - X:

Functions - Function Philosophy - Function Basics - Function Prototypes - and Passing

Parameters - Passing Parameter by value and Passing Parameter by reference - passing

string to function - Passing array to function - Structures and Functions Recursion.

88-99

UNIT - XI:

Storage Classes - Storage Classes and Visibility - Automatic or local variables - Global

variables - Static variables - External variables.

100-106

BLOCK IV: STORAGE CLASSES & FILE MANAGEMENT

UNIT - XII:

 The Preprocessor - File Inclusion - Macro Definition and Substitution - Macros with

Arguments - Nesting of Macros - Conditional Compilation.

107-114

UNIT - XIII:

 Dynamic Memory Allocation and Linked List - Dynamic Memory Allocation -

Allocating Memory with malloc - Allocating Memory with calloc - Freeing Memory -

Reallocating Memory Blocks - Pointer Safety - The Concept of linked list - Inserting a

node by using Recursive Programs - Sorting and Reversing a Linked List - Deleting the

Specified Node in a Singly Linked List.

115-127

UNIT - XIV:

 File Management - Defining and Opening a file - Closing Files - Input/output Operations

on Files - Predefined Streams - Error Handling during I/O Operations - Random Access to

Files - Command Line Arguments.

127-137

MODEL QUESTION PAPER 138-139

CONTENT PAGE NO

UNIT I - PRINCIPLES OF PROGRAMMING

1.1. Introduction

1.2. Objective

1.3. Programming

1.4. Programming Domain

1.4.1. Scientific Application

1.4.2. Business Applications

1.4.3. Artificial Intelligence

1.4.4. System Programming

1.4.5. Web Software

1.5. Categories of Programming Languages

1.5.1. Machine Level Languages

1.5.2. Assembly Level Languages

1.5.3. High Level Languages

1.6. Programming Design Methodologies

 1.6.1. Top Down and Bottom Up

1.7. Program Development Cycle with Case Study

1.8. Program Execution and Translation Process

1.9. Problem solving using algorithms and flowcharts

1.10. Performance analysis and measurements

 1.10.1. Time and space complexity

1.11. Let Us Sum Up

1.12. Unit – End Exercises

1.13. Answer to Check Your Progress

1.14. Suggested Readings

1-12

UNIT II – C PROGRAMMING

2.1. Introduction

2.2. Objective

2.3. Features of C and Basic Structure

2.3.1. Basic Structure of a C program

2.3.2. Simple C Program

2.4. Constants

2.4.1. Integer Constants

2.4.2. Real Constants

2.4.3. Character Constants

2.4.4. String Constants

2.4.5. Backslash Character Constants

13-20

2.5. Concept of an Integer and Variable

 2.5.1. Rules for naming variables and assigning values to variables

2.6. Let Us Sum Up

2.7. Unit – End Exercises

2.8. Answer to Check Your Progress

2.9. Suggested Readings

UNIT III – OPERATORS AND EXPRESSIONS

3.1. Introduction

3.2. Objective

3.3. Operators

3.3.1. Arithmetic Operators

3.3.2. Unary Operators

3.3.3. Relational and Logical Operators

3.3.4. The Conditional Operator

3.3.5. Library Functions

3.3.6. Bitwise Operators

3.3.7. The Increment and Decrement Operators

3.3.8 The Sizeof Operator

3.4. Precedence of operators

3.5. Let Us Sum Up

3.6. Unit – End Exercises

3.7. Answer to Check Your Progress

3.8. Suggested Readings

21-30

UNIT IV – DATA TYPES AND INPUT/OUTPUT OPERATORS

4.1. Introduction

4.2. Objective

4.3. Data Types

4.3.1. Floating Point Numbers

4.3.2. Converting integers and Floating-point and vice-versa

4.3.3. Mixed-Mode Expressions

4.3.4. The type cast Operator

4.3.5. The type char

4.4. Keywords

4.5. Character Input and Output

4.6. Formatted input and output

 4.6.1. The gets() and outs() functions

4.7. Interactive Programming

4.8. Let Us Sum Up

4.9. Unit – End Exercises

4.10. Answer to Check Your Progress

31-40

4.11. Suggested Readings

UNIT V – CONTROL STATEMENTS AND DECISION MAKING

5.1. Introduction

5.2. Objective

5.3. The go to statement

5.4. The if statement

5.5. The if-else statement

5.6. Nesting of if statement

5.7. The Conditional expression

5.8. The switch statement

5.9. The while loop

5.10. The do…while loop

5.11. The for loop

5.12. The nesting of for loop

5.13. The break statement and continue statement

5.14. Let Us Sum Up

5.15. Unit – End Exercises

5.16. Answer to Check Your Progress

5.17. Suggested Readings

41-55

UNIT VI – ARRAYS AND STRINGS

6.1. Introduction

6.2. Objective

6.3. Arrays

6.3.1. One Dimensional Array

6.3.2. Passing Arrays to Functions

6.3.3. Multidimensional Arrays

6.4. Strings

6.5. Let Us Sum Up

6.6. Unit – End Exercises

6.7. Answer to Check Your Progress

6.8. Suggested Readings

56-65

UNIT VII – POINTERS – I

7.1. Introduction

7.2. Objective

7.3. Basics of Pointers

7.4. Pointers and One-dimensional Arrays

7.5. Pointer Arithmetic

7.6. Pointer Subtraction and Comparison

66-73

7.7. Similarities between Pointers and One-dimensional Arrays

7.8. Let Us Sum Up

7.9. Unit – End Exercises

7.10. Answer to Check Your Progress

7.11. Suggested Readings

UNIT VIII – POINTERS – II

8.1. Introduction

8.2. Objective

8.3. Null Pointers

8.4. Pointers and Strings

8.5. Pointers and two-dimensional arrays

8.6. Arrays of Pointers

8.7. Let Us Sum Up

8.8. Unit – End Exercises

8.9. Answer to Check Your Progress

8.10. Suggested Readings

74-79

UNIT IX – STRUCTURES AND UNIONS

9.1. Introduction

9.2. Objective

9.3. Structures

 9.3.1. Basics of Structures

 9.3.2. Arrays of Structures

 9.3.3. Pointers to Structures

 9.3.4. Self-referential Structures

9.4. Unions

9.5. Let Us Sum Up

9.6. Unit – End Exercises

9.7. Answer to Check Your Progress

9.8. Suggested Readings

80-87

UNIT X – FUNCTIONS

10.1. Introduction

10.2. Objective

10.3. Functions

10.3.1. Function Philosophy

10.3.2. Function Basics

10.3.3. Function Prototypes

10.3.4. Passing Arguments

10.3.5. Passing parameter by value and Passing parameter by Reference

88-99

10.3.6. Passing string to function

10.3.7. Passing array to function

10.3.8. Structures and Functions

10.3.9. Recursion

10.4. Let Us Sum Up

10.5. Unit – End Exercises

10.6. Answer to Check Your Progress

10.7. Suggested Readings

UNIT XI – STORAGE CLASSES

11.1. Introduction

11.2. Objective

11.3. Storage Classes and Visibility

11.4. Automatic or local Pointers and Strings

11.5. Global Variables

11.6. Statics Variables

11.7. External Variables

11.8. Let Us Sum Up

11.9. Unit – End Exercises

11.10. Answer to Check Your Progress

11.11. Suggested Readings

100-106

UNIT XII – THE PREPROCESSOR

12.1. Introduction

12.2. Objective

12.3. File Inclusion

12.4. Macro Definition and Substitution

12.5. Macros with Arguments

12.6. Nesting of Macros

12.7. Conditional Compilation

12.8. Let Us Sum Up

12.9. Unit – End Exercises

12.10. Answer to Check Your Progress

12.11. Suggested Readings

107-114

UNIT XIII – DYNAMIC MEMORY ALLOCATION AND LINKED LIST

13.1. Introduction

13.2. Objective

13.3. Dynamic Memory Allocation

13.3.1. Allocating Memory with malloc

115-127

13.3.2. Allocating Memory with calloc

13.3.3. Freeing Memory

13.3.4. Reallocating Memory Blocks

13.4. Pointer Safety

13.5. The Concept of Linked List

 13.5.1. Inserting a node by using Recursive Programs

 13.5.2. Sorting and Reversing a Linked List

 13.5.3. Deleting the Specified Node in a Singly Linked List

13.6. Let Us Sum Up

13.7. Unit – End Exercises

13.8. Answer to Check Your Progress

13.9. Suggested Readings

UNIT XIV – FILE MANAGEMENT

14.1. Introduction

14.2. Objective

14.3. Defining and Opening a file

14.4. Closing Files

14.5. Input / Output Operations on Files

14.6. Predefined Streams

14.7. Error Handling during I/O

14.8. Random Access to Files

14.9. Command Line Arguments

14.10. Let Us Sum Up

14.11. Unit – End Exercises

14.12. Answer to Check Your Progress

14.13. Suggested Readings

128-137

MODEL QUESTION PAPER 138-139

1

Principles of

Programming

 NOTES

Self-instructional Material

BLOCK I: PROGRAMMING

CONCEPTS & C LANGUAGE

UNIT I - PRINCIPLES OF

PROGRAMMING

Structure

1.1. Introduction

1.2. Objective

1.3. Programming

1.4. Programming Domain

1.4.1. Scientific Application

1.4.2. Business Applications

1.4.3. Artificial Intelligence

1.4.4. System Programming

1.4.5. Web Software

1.5. Categories of Programming Languages

1.5.1. Machine Level Languages

1.5.2. Assembly Level Languages

1.5.3. High Level Languages

1.6. Programming Design Methodologies

 1.6.1. Top Down and Bottom Up

1.7. Program Development Cycle with Case Study

1.8. Program Execution and Translation Process

1.9. Problem solving using algorithms and flowcharts

1.10. Performance analysis and measurements

 1.10.1. Time and space complexity

1.11. Let Us Sum Up

1.12. Unit – End Exercises

1.13. Answer to Check Your Progress

1.14. Suggested Readings

1.1. INTRODUCTION

As an end in itself, understanding programming language concepts

and terms is important to enable you learn more about programming and

programming languages after the course is over. Without understanding

these concepts and terms, you will have difficulty discussing programming

language ideas with others, and will have difficulty in reading the technical

literature. Since computer science is rapidly evolving new programming

languages and since language issues are important in many areas of

computer science the ability to learn more quickly is important to

maintaining your technical edge.

2

Principles of

Programming

NOTES

Self-instructional Material

1.2. OBJECTIVES

After going through this lesson you would be in a positions to

 Use ideas from the various paradigms when programming in a language

that is not explicitly suited to that paradigm.

 Implement important run-time data structures and algorithms, and state a

first-order approximation to the time and space costs incurred by programs

that use such implementations.

 Evaluate design alternatives for language features by applying general

principles of language design or by analogy to historically important

languages.

 Design features of programming languages, and justify your design

decisions.

1.3. PROGRAMMING

Programming is the process of writing a sequence of instructions to

be executed by a computer to solve a problem. It is also considered as the act

of writing computer programs. Computer programs are set of instructions

that tell a computer to perform certain operations. The instructions in

programs are logically sequenced and assembled through the act of

programming. Computer programming has many facets: It is like

engineering because computer programs must be carefully designed to be

reliable and inexpensive to maintain. It is an art because good programs

require that the programmer use intuition and a personal sense of style. It is a

literary effort because programs must be understood by computers, and this

requires mastery of a programming language.

Reasons for Studying Concepts of Programming Languages

 Increased ability to express ideas

 Improved background for choosing appropriate languages

 Increased ability to learn new languages

 Better understanding of significance of implementation

 Overall advancement of computing.

1.4. PROGRAMMING DOMAIN

 Programming domain defines the ability of using a specific language

for a specific usage. There are many programming domains, but let’s take the

common domains.

1.4.1. Scientific applications

Scientific Applications Typically, scientific applications have simple

data structures but require large numbers of floating-point arithmetic

computations. For some scientific applications where efficiency is the

primary concern, like those that were common in the 1950’s and 1960’s, no

subsequent language is significantly better than FORTRAN.FORTRAN.

1.4.2. Business applications

The use of computers for business applications began in the 1950’s.

The first successful high-level language for business was COBOL which

appeared in 1960.COBOL Business languages are characterized, according

to the needs of the application, by elaborate input and output facilities and

3

Principles of

Programming

 NOTES

Self-instructional Material

decimal data types. With the advent of microcomputers came new ways of

businesses, especially small businesses, to use computers. Two specific

tools, spreadsheet systems and database systems, were developed for

business and now are widely used.

1.4.3. Artificial intelligence

AI is a broad area of computer applications characterized by the

absence of exact algorithms and the use of symbolic computations rather

than numeric computation. Symbolic computation means that symbols,

consisting of names rather than numbers, are manipulated. The first widely

used programming language developed for AI applications was the

functional language LISP (Scheme) which appeared in 1959.LISP. An

alternative approach to these applications appeared in the early 1970’s: logic

programming using Prolog language Prolog.

1.4.4. Systems programming

The operating system and all of the programming support tools of a

computer system are collectively known as its systems software. Systems

software is used almost continuously and therefore must have execution

efficiency. A language for this domain must have low-level features that

allow the software to external devices to be written. In the 1960’s and

1970’s, some computer manufacturers, such as IBM, Digital, and Burroughs

(now UNISYS) developed special machine-oriented high level languages for

systems software on their machines. For IBM mainframe computers, the

language was PL/S, a dialect of PL/I; for Digital, it Is BLISS, a language at a

level just above assembly language; for Burroughs, it was Extended

Algol.PL/S BLISSAlgol The UNIX operating system is written almost

entirely in C, which was made it relatively easy to port, or move, to different

machines.

1.4.5. Web Software

For web software we can write applications in any whatever language

platform is, we can build web software using C/C++. It is more complex for

making web software, but need another programming environment such as,

mark-up languages, pre-processor hypertext and .net framework to be

executed properly. Java is actually the most commonly used programming

language for building and running web applications. It has powerful feature

than the other programming languages which is applets that provide creating

a web based application.

1.5. CATEGORIES OF PROGRAMMING LANGUAGES

 Computer language or programming language is a coded syntax

used by computer programmers to communicate with a computer. It is the

only language that computers, software programs and computer hardware

can understand. Computer language establishes a flow of communication

4

Principles of

Programming

NOTES

Self-instructional Material

between software programs. The language enables a computer user to

dictate what commands the computer must perform to process data.

Computer language comes in various types that employ different sets of

syntax.

There are three types of programming languages, which can be

categorized into the following way,

1. Low-Level Language (Or) Machine Level Language.

2. Assembly Level Language.

3. High Level Language.

These languages are not mutually exclusive, and some languages can

belong to multiple categories. The terms low-level and high-level are also

open to interpretation, and some languages that were once considered high-

level are now considered low-level as languages have continued to develop.

1.5.1. Low-Level Language (Or) Machine Level Language

 Machine language or machine code is the native language directly

understood by the computer's central processing unit or CPU. This type of

computer language is not easy to understand, as it only uses a binary system,

an element of notations containing only a series of numbers consisting of one

and zero, to produce commands. The computer's processor needs to convert

high-level languages into this language before it can run a program or do a

user-defined command. To convert a certain language into machine code, the

computer processor needs a compiler, a program that converts a source code

written in one language into different language syntax. The compiler

generates a binary file, or executable file, that the CPU will execute. Every

computer processor has its own set of machine code. The machine code will

determine what the computer processor should do, and how it should do it.

1.5.2. Assembly Level Language

 It was developed to overcome some of the many inconveniences of

machine language. This is another low level but a very important language in

which operation codes and operands are given in the form of alphanumeric

symbols instead of 0’s and 1’s. These alphanumeric symbols will be known

as mnemonic codes and can have maximum up to 5 letter combinations e.g.

ADD for addition, SUB for subtraction, START LABEL etc. because of this

feature it is also known as “Symbolic Programming Language”. This

language is very difficult and needs a lot of practice to master it because very

small English support is given. This symbolic language helps in compiler

orientations. The instructions of the assembly language will also be

converted to machine codes by language translator to be executed by the

computer.

1.5.3. High-Level Languages

 High level computer languages give formats close to English

language and the purpose of developing high level languages is to enable

people to write programs easily and in their own native language

environment (English). High-level languages are basically symbolic

languages that use English words and/or mathematical symbols rather than

mnemonic codes. Each instruction in the high level language is translated

into many machine language instructions thus showing one-to-many

translation.

5

Principles of

Programming

 NOTES

Self-instructional Material

 Problem-Oriented Language: These are languages used for handling

specialized types of data processing problems where programmer only

specifies the input/output requirements and other relative information of the

problem, that are to be solved. The programmer does not have to specify the

procedure to be followed in solving that particular problem.

 Procedural Language: These are general purpose languages that are

designed to express the logic of a data processing problem.

 Non-procedural Language: Computer Programming Languages that

allow users and professional programmers to specify the results they want

without specifying how to solve the problem.

Figure 1: - High-Level Language

1.6. PROGRAMMING DESIGN METHODOLOGIES

 When programs are developed to solve real-life problems like

inventory management, payroll processing, student admissions, examination

result processing, etc. they tend to be huge and complex. The approach to

analyzing such complex problems, planning for software development and

controlling the development process is called programming methodology.

Programming Methodology is the approach to analyzing such complex

problems by planning the software development and controlling the

development process.

Here the problem is broken down into logical units rather than functional

units. Software developers may choose one or a combination of more than

one of these methodologies to develop software. Note that in each of the

methodologies discussed, problem has to be broken down into smaller units.

To do this, developers use any of the following two approaches −

 Top-down approach

 Bottom-up approach

1.6.1. Top-Down and Bottom-Up

Top-Down Approach

 The basic idea in top-down approach is to break a complex algorithm

or a problem into smaller segments called modules, this process is also called

as modularization. The modules are further decomposed until there is no

space left for breaking the modules without hampering the originality. The

6

Principles of

Programming

NOTES

Self-instructional Material

uniqueness of the problem must be retained and preserved. The

decomposition of the modules is restricted after achieving a certain level of

modularity. The top-down way of solving a program is step-by-step process

of breaking down the problem into chunks for organizing and solving the

sole problem. Advantages of top-down approach is as follows,

1. In this approach, first, we develop and test most important module.

2. This approach is easy to see the progress of the project by developer

or customer.

3. Using this approach, we can utilize computer resources in a proper

manner according to the project.

4. Testing and debugging is easier and efficient.

5. In this approach, project implementation is smoother and shorter.

6. This approach is good for detecting and correcting time delays.

Bottom-Up Approach

 As the name suggests, this method of solving a problem works

exactly opposite of how the top-down approach works. In this approach we

start working from the most basic level of problem solving and moving up in

conjugation of several parts of the solution to achieve required results. The

most fundamental units, modules and sub-modules are designed and solved

individually, these units are then integrated together to get a more concrete

base to problem solving.

This bottom-up approach works in different phases or layers. Each

module designed is tested at fundamental level that means unit testing is

done before the integration of the individual modules to get solution.

Advantages of bottom-up approach is as follows,

1. Solves the fundamental low-level problem and integrates them into a larger

one.

2. Examine what data is to be encapsulated, and implies the concept of

information hiding.

3. Needs a specific amount of communication.

4. Redundancy can be eliminated.

5. Object-oriented programming languages follow the bottom-up approach.

1.7. PROGRAM DEVELOPMENT CYCLE

 When we want to develop a program using any programming

language, we follow a sequence of steps. These steps are called phases in

program development. The program development life cycle is a set of steps

or phases that are used to develop a program in any programming language.

Generally, program development life cycle contains 6 phases, they are as

follows,

 Problem Definition

 Problem Analysis

 Algorithm Development

 Coding & Documentation

 Testing & Debugging

 Maintenance

7

Principles of

Programming

 NOTES

Self-instructional Material

Figure 2: - Program Development Life Cycle

 Problem Definition

In this phase, we define the problem statement and we decide the

boundaries of the problem. In this phase we need to understand the problem

statement, what is our requirment, what should be the output of the

problem solution? These are defined in this first phase of the program

development life cycle.

 Problem Analysis

In second phase, we determine the requirements like variables,

functions, etc. to solve the problem. That means we gather the required

resources to solve the problem defined in the problem definition phase. We

also determine the bounds of the solution.

 Algorithm Development

During this phase, we develop a step by step procedure to solve the

problem using the specification given in the previous phase. This phase is

very important for program development. That means we write the solution

in step by step statements.

 Coding & Documentation

This phase uses a programming language to write or implement actual

programming instructions for the steps defined in the previous phase. In

this phase, we construct actual program. That means we write the program

to solve the given problem using programming languages like C, C++, Java

etc.,

 Testing & Debugging

During this phase, we check whether the code written in previous step

is solving the specified problem or not. That means we test the program

whether it is solving the problem for various input data values or not. We

also test that whether it is providing the desired output or not.

 Maintenance

During this phase, the program is actively used by the users. If any

enhancements found in this phase, all the phases are to be repeated again to

make the enhancements. That means in this phase, the solution (program) is

used by the end user. If the user encounters any problem or wants any

8

Principles of

Programming

NOTES

Self-instructional Material

enhancement, then we need to repeat all the phases from the starting, so

that the encountered problem is solved or enhancement is added.

1.7. PROGRAM EXECUTION AND TRANSLATION

PROCESS

 Assembly language is machine dependent yet mnemonics that are

being used to represent instructions in it are not directly understandable by

machine and high Level language is machine independent. A computer

understands instructions in machine code, i.e. in the form of 0s and 1s. It is a

tedious task to write a computer program directly in machine code. The

programs are written mostly in high level languages like Java, C++, and

Python etc. and are called source code. This source code cannot be executed

directly by the computer and must be converted into machine language to be

executed. Hence, a special translator system software is used to translate the

program written in high-level language into machine code is called Language

Processor and the program after translated into machine code.

The language processors can be any of the following three types:

Compiler: -
The language processor that reads the complete source program

written in high level language as a whole in one go and translates it into an

equivalent program in machine language is called as a Compiler.

Assembler: -
The Assembler is used to translate the program written in Assembly

language into machine code. The source program is a input of assembler that

contains assembly language instructions. The output generated by assembler

is the object code or machine code understandable by the computer.

Interpreter: -
The translation of single statement of source program into machine

code is done by language processor and executes it immediately before

moving on to the next line is called an interpreter. If there is an error in the

statement, the interpreter terminates its translating process at that statement

and displays an error message. The interpreter moves on to the next line for

execution only after removal of the error. An Interpreter directly executes

instructions written in a programming or scripting language without

previously converting them to an object code or machine code.

Execution of a C program involves four stages using different

compiling/execution tool, these tools are set of programs which help to

complete the C program's execution process.

1. Preprocessor

2. Compiler

3. Linker

4. Loader

These tools make the program running.

Preprocessor: -

This is the first stage of any C program execution process; in this

stage Preprocessor processes the program before compilation. Preprocessor

include header files, expand the Macros.

9

Principles of

Programming

 NOTES

Self-instructional Material

Complier: -

This is the second stage of any C program execution process, in this

stage generated output file after preprocessing (with source code) will be

passed to the compiler for compilation. Complier will compile the program,

checks the errors and generates the object file (this object file contains

assembly code).

Linker: -

This is the third stage of any C program execution process, in this

stage Linker links the more than one object files or libraries and generates

the executable file.

Loader: -
This is the fourth or final stage of any C program execution process,

in this stage Loader loads the executable file into the main/primary memory.

And program run.

1.9. PROBLEM SOLVING USING ALGORITHMS AND

FLOWCHARTS

 During the process of solving any problem, one tries to find the

necessary steps to be taken in a sequence. A typical programming task can be

divided into two phases:

1. Problem solving phase.

2. Implementation phase.

It produces an ordered sequence of steps that describe solution of

problem. This sequence of steps is called an algorithm. Implement the

program in some programming language

Algorithm

 The word “algorithm” relates to the name of the mathematician Al-

khowarizmi, which means a procedure or a technique. Software Engineer

commonly uses an algorithm for planning and solving the problems. An

algorithm is a sequence of steps to solve a particular problem or algorithm

is an ordered set of unambiguous steps that produces a result and

terminates in a finite time.

Algorithm has the following characteristics,

 Input: An algorithm may or may not require input

 Output: Each algorithm is expected to produce at least one result

 Definiteness: Each instruction must be clear and unambiguous.

 Finiteness: If the instructions of an algorithm are executed, the

algorithm should terminate after finite number of steps

The algorithm and flowchart include following three types of control

structures.

1. Sequence: In the sequence structure, statements are placed one after

the other and the execution takes place starting from up to down.

2. Branching (Selection): In branch control, there is a condition and

according to a condition, a decision of either TRUE or FALSE is

achieved. In the case of TRUE, one of the two branches is explored; but in

the case of FALSE condition, the other alternative is taken. Generally, the

‘IF-THEN’ is used to represent branch control.

10

Principles of

Programming

NOTES

Self-instructional Material

3. Loop (Repetition): The Loop or Repetition allows a statement(s) to be

executed repeatedly based on certain loop condition e.g. WHILE, FOR

loops.

Advantages of algorithm

 It is a step-wise representation of a solution to a given problem, which makes

it easy to understand.

 An algorithm uses a definite procedure.

 It is not dependent on any programming language, so it is easy to understand

for anyone even without programming knowledge.

 Every step in an algorithm has its own logical sequence so it is easy to

debug.

Flowchart

 Flowchart uses different symbols to design a solution to a problem. It

is another commonly used programming tool. By looking at a Flowchart one

can understand the operations and sequence of operations performed in a

system. Flowchart is often considered as a blueprint of a design used for

solving a specific problem.

Advantages of flowchart:

 Flowchart is an excellent way of communicating the logic of a program.

 Easy and efficient to analyze problem using flowchart.

 During program development cycle, the flowchart plays the role of a

blueprint, which makes program development process easier.

 After successful development of a program, it needs continuous timely

maintenance during the course of its operation. The flowchart makes

program or system maintenance easier.

 It is easy to convert the flowchart into any programming language code.

Flowchart is diagrammatic /Graphical representation of sequence of steps to

solve a problem.

1.10. PERFORMANCE ANALYSIS AND

MEASUREMENTS

 Efficiency of an algorithm can be analyzed at two different stages,

before implementation and after implementation. They are the following −

 A Priori Analysis − this is a theoretical analysis of an algorithm.

Efficiency of an algorithm is measured by assuming that all other factors, for

example, processor speed, are constant and have no effect on the

implementation.

 A Posterior Analysis − this is an empirical analysis of an algorithm.

The selected algorithm is implemented using programming language. This is

then executed on target computer machine. In this analysis, actual statistics

like running time and space required are collected.

Algorithm analysis deals with the execution or running time of various

operations involved. The running time of an operation can be defined as the

number of computer instructions executed per operation.

11

Principles of

Programming

 NOTES

Self-instructional Material

1.10.1. Time and Space complexity

 Performance analysis of an algorithm depends upon two factors i.e.

amount of memory used and amount of compute time consumed on any

CPU. Formally they are notified as complexities in terms of:

 Space Complexity.

 Time Complexity.
Space Complexity of an algorithm is the amount of memory it needs to run

to completion i.e. from start of execution to its termination. Space need by

any algorithm is the sum of following components:

 Fixed Component: This is independent of the characteristics of the inputs

and outputs. This part includes: Instruction Space, Space of simple variables,

fixed size component variables, and constants variables.

 Variable Component: This consist of the space needed by component

variables whose size is dependent on the particular problems

instances(Inputs/Outputs) being solved, the space needed by referenced

variables and the recursion stack space is one of the most prominent

components. Also this included the data structure components like Linked

list, heap, trees, graphs etc.

Among both fixed and variable component the variable part is important

to be determined accurately, so that the actual space requirement can be

identified for an algorithm 'A'.

Time Complexity of an algorithm (basically when converted to program)

is the amount of computer time it needs to run to completion. The time taken

by a program is the sum of the compile time and the run/execution time. The

compile time is independent of the instance (problem specific)

characteristics. Following factors affect the time complexity:

 Characteristics of compiler used to compile the program.

 Computer Machine on which the program is executed and physically

clocked.

 Multiuser execution system.

 Number of program steps.

Here the number of steps is the most prominent instance characteristics

and the number of steps any program statement is assigned depends on the

kind of statement like

 Comments count as zero steps,

 An assignment statement which does not involve any calls to other algorithm

is counted as one step,

 For iterative statements, we consider the steps count only for the control part

of the statement etc.

Therefore to calculate total number program of program steps we use

following procedure. For this we build a table in which we list the total

number of steps contributed by each statement.

1.11. LET US SUM UP

 In this unit, you have learnt about the basics of programming,

categories of programming languages and problem solving strategies. This

knowledge would make you understand the various programming domain

and types of languages used to develop the programs for real time problems.

12

Principles of

Programming

NOTES

Self-instructional Material

Thus, the principles of programming unit would have brought you to closer

to know the concept of basics of programming.

1.12. UNIT – END QUESTIONS

1. List out the various programming domains used for real time problems.

2. Explain about the categories of programming languages.

3. Define algorithm?

1.13. ANSWER TO CHECK YOUR PROGRESS

1. Scientific Applications Typically, scientific applications have simple data

structures but require large numbers of floating-point arithmetic

computations. Business languages are characterized, according to the needs

of the application, by elaborate input and output facilities and decimal data

types. AI is a broad area of computer applications characterized by the

absence of exact algorithms and the use of symbolic computations rather

than numeric computation. The operating system and all of the programming

support tools of a computer system are collectively known as its systems

software. Systems software is used almost continuously and therefore must

have execution efficiency.

2. Machine language or machine code is the native language directly

understood by the computer's central processing unit or CPU. This type of

computer language is not easy to understand, as it only uses a binary system,

an element of notations containing only a series of numbers consisting of one

and zero, to produce commands. Assembly language is very difficult and

needs a lot of practice to master it because very small English support is

given. This symbolic language helps in compiler orientations. High-level

languages are basically symbolic languages that use English words and/or

mathematical symbols rather than mnemonic codes.

3. An algorithm is a sequence of steps to solve a particular problem or

algorithm is an ordered set of unambiguous steps that produces a result and

terminates in a finite time.

1.14. SUGGESTED READNGS

1. “The C Programming Language”, Brain W. Kernighan / Dennis Ritchie,

Pearson Publications, 2015.

2. “C: The Complete Reference”, Herbert Schildt, McGraw Hill Publications,

Fourth Edition, 2017.

13

 Self-instructional Material

C Programming

 NOTES

UNIT II – C PROGRAMMING

Structure

2.1. Introduction

2.2. Objective

2.3. Features of C and Basic Structure

2.3.1. Basic Structure of a C program

2.3.2. Simple C Program

2.4. Constants

2.4.1. Integer Constants

2.4.2. Real Constants

2.4.3. Character Constants

2.4.4. String Constants

2.4.5. Backslash Character Constants

2.5. Concept of an Integer and Variable

 2.5.1. Rules for naming variables and assigning values to variables

2.6. Let Us Sum Up

2.7. Unit – End Exercises

2.8. Answer to Check Your Progress

2.9. Suggested Readings

2.1. INTRODUCTION

In this lesson you will be aware with the basic elements used to

construct simple C statements. These elements include the C character set,

keywords and identifiers, constants, data types, variables, arrays,

declarations, expressions and statements. These basic elements are used to

construct more comprehensive program components. Some of the basic

elements needs very detailed information, however, the purpose of this type

of basic elements is to introduce certain basic concepts and to provide some

necessary definitions for the topics that follow in next few lessons.

2.2. OBJECTIVES

After going through this lesson you would be in a positions to

 Recognize ‘C’ character set.

 Recognize keywords and identifiers.

 Define constants, data types, variables and arrays.

 Explain the concept of declaration.

2.3. FEATURES OF C AND BASIC STRUCTURE

 The C Language is developed for creating system applications that

directly interact with the hardware devices such as drivers, kernels, etc. C

14

C Programming

NOTES

Self-instructional Material

programming is considered as the base for other programming languages,

that is why it is known as mother language.

C Language is an amazing language when it comes to simplicity of

syntax with decent functionality. It is a robust language with a rich set of

built-in functions and operators that can be used to write any complex

program. The C compiler combines the capabilities of an assembly language

with features of a high-level language. Programs Written in C are efficient

and fast. This is due to its variety of data type and powerful operators. C is

highly portable this means that programs once were written can be run on

another machine with little or no modification.

Features of C language

 It is a robust language with rich set of built-in functions and operators

that can be used to write any complex program.

 The C compiler combines the capabilities of an assembly language

with features of a high-level language.

 Programs Written in C are efficient and fast. This is due to its variety

of data type and powerful operators.

 It is many time faster than BASIC.

 C is highly portable this means that programs once written can be run

on another machines with little or no modification.

 Another important feature of C program is its ability to extend itself.

 A C program is basically a collection of functions that are supported

by C library. We can also create our own function and add it to C library.

 C language is the most widely used language in operating systems

and embedded system development today.

2.3.1. Basic Structure of a C Program

 C is a procedural programming language as well as a general-purpose

programming language that was developed by Dennis Ritchie at AT&T’s

Bell laboratories in 1972. It is an amazing and simple language that helps

you develop complex software applications with ease. It is considered as the

mother of all languages. C is a high-level programming language that

provides support to a low-level programming language as well.

Documentation section

Link section

Definition section

Global declaration section

main() function section

{

 declaration part

 executable part

}

 Subprogram section

 function 1

 function 2

 function 3 User Defined functions

 .

 .

15

 Self-instructional Material

C Programming

 NOTES

 function n

Figure 3: - Structure of a C Program

Documentation Section
This section consists of comment lines which include the name of

programmer, the author and other details like time and date of writing the

program. Documentation section helps anyone to get an overview of the

program.

Link Section
The link section consists of the header files of the functions that are

used in the program. It provides instructions to the compiler to link functions

from the system library.

Definition Section
All the symbolic constants are written in definition section. Macros

are known as symbolic constants.

Global Declaration Section
The global variables that can be used anywhere in the program are

declared in global declaration section. This section also declares the user

defined functions.

main() Function Section
It is necessary have one main() function section in every C program.

This section contains two parts, declaration and executable part. The

declaration part declares all the variables that are used in executable part.

These two parts must be written in between the opening and closing braces.

Each statement in the declaration and executable part must end with a

semicolon (;). The execution of program starts at opening braces and ends at

closing braces.

Subprogram Section
The subprogram section contains all the user defined functions that are used

to perform a specific task. These user defined functions are called in the

main() function.

2.3.2. Simple C Program

 Before starting the abcd of C language, you need to learn how to

write, compile and run the first c program.

To write the first c program, open the C console and write the following

code:

#include <stdio.h>

int main()

{

printf("Hello C Language");

return 0;

}

 #include <stdio.h> includes the standard input output library functions.

The printf() function is defined in stdio.h .

 int main() The main() function is the entry point of every program in c

language.

 printf() The printf() function is used to print data on the console.

16

C Programming

NOTES

Self-instructional Material

 return 0 The return 0 statement, returns execution status to the OS. The 0

value is used for successful execution and 1 for unsuccessful execution.

How to compile and run the c program

There are 2 ways to compile and run the c program, by menu and by

shortcut.

By menu

 Now click on the compile menu then compile sub menu to compile the c

program.

 Then click on the run menu then run sub menu to run the c program.

By shortcut

 Or, press ctrl+f9 keys compile and run the program directly.

 You can view the user screen any time by pressing the alt+f5 keys.

 Now press Esc to return to the turbo c console.

2.4. CONSTANTS

 Constants refer to fixed values that the program may not alter during

its execution. These fixed values are also called constants. Constants can be

of any of the basic data types like an integer constant, a floating constant, a

character constant, or a string literal. There are enumeration constants as

well.

Constants are treated just like regular variables except that their

values cannot be modified after their definition.

Integer Constants

An integer literal can be a decimal, octal, or hexadecimal constant. A

prefix specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal, and

nothing for decimal. An integer literal can also have a suffix that is a

combination of U and L, for unsigned and long, respectively. The suffix can

be uppercase or lowercase and can be in any order. Here are some examples

of integer constants −

212 /* Legal */

215u /* Legal */

0xFeeL /* Legal */

078 /* Illegal: 8 is not an octal digit */

032UU /* Illegal: cannot repeat a suffix */

Floating-point or Real Constants

A floating-point literal has an integer part, a decimal point, a

fractional part, and an exponent part. You can represent floating point

constants either in decimal form or exponential form. While representing

decimal form, you must include the decimal point, the exponent, or both; and

while representing exponential form, you must include the integer part, the

fractional part, or both. The signed exponent is introduced by e or E. Here

are some examples of floating-point constants −

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

17

 Self-instructional Material

C Programming

 NOTES

Single Character Constants

 It simply contains a single character enclosed within ' and ' (a pair of

single quote). It is to be noted that the character '8' is not the same as 8.

Character constants have a specific set of integer values known as ASCII

values (American Standard Code for Information Interchange).

Example: - 'X', '5', ';'

String Constants

 These are a sequence of characters enclosed in double quotes, and

they may include letters, digits, special characters, and blank spaces. It is

again to be noted that "G" and 'G' are different - because "G" represents a

string as it is enclosed within a pair of double quotes whereas 'G' represents a

single character.

Example: - "Hello!", "2015", "2+1"

Backslash Character constants

 C supports some character constants having a backslash in front of it.

The lists of backslash characters have a specific meaning which is known to

the compiler. They are also termed as "Escape Sequence".

For Example:

\t is used to give a tab.

\n is used to give a new line.

Table 1: - Backslash Character Constants
\a beep sound
\b backspace
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\' single quote
\" double quote
\\ backslash
\0 null
\f form feed

2.5. CONCEPT OF AN INTEGER AND VARIABLE

 Integers are whole numbers, having no fractional component, in

contrast to real numbers (floating point in C). In the C programming

language, character data is considered an integer data type. Some properties

of note in the C language are that integer types have various sizes, with the

implication that the value of the number that can be stored / represented in

any particular integer variable has a maximum. The number of bytes in an

integer word defines this maximum. In C, integers can be defined as either

signed, or unsigned. Naturally, unsigned integer data types cannot store

negative values.

18

C Programming

NOTES

Self-instructional Material

 Integer data can be used as indices to arrays. Integer data can always

be used to test for equality (as opposed to floating point variables, where

testing for equality is only guaranteed to work when one value is zero). The

language defines the value zero to be a word which has all bits equal to zero.

Non-zero integers may be stored in any notation, although two's complement

notation is used virtually universally. It is meaningful to perform Boolean

arithmetic (left and right shifts, ands, or, xors, complements, etc) on integer

data (again, in contrast to floating point). The C language defines various

notations for expressing integer values in source code (decimal, hex, octal,

binary, character, etc), whereas it almost never makes sense to use any of

these to create floating point constants.

2.5.1. Rules for naming variables and assigning values to variables

 A variable is nothing but a name given to a storage area that our

programs can manipulate. Each variable in C has a specific type, which

determines the size and layout of the variable's memory; the range of values

that can be stored within that memory; and the set of operations that can be

applied to the variable.

Rules for forming a variable:

1. The starting character should be a letter. The first character may be followed

by a sequence of letters or digits.

2. The maximum number of characters in a variable may be 8 characters. The

number of characters differs from compiler to compiler.

3. Upper and lower case are significant. Example: TOTAL is not same as total

or Total.

4. The variable should not be a keyword.

5. White space is not allowed.

6. Special characters except _(underscore) symbol are not allowed.

 Variable is name of reserved area allocated in memory. In other

words, it is a name of memory location. Variables are used to store

information to be referenced and manipulated in a computer program. Value

of the variable can change, depending on conditions or on information

passed to the program.

Variable Definition and Initialization in C

A variable definition tells the compiler where and how much storage

to create for the variable. A variable definition specifies a data type and

contains a list of one or more variables of that type as follows –

 type variable_list;

Here, type must be a valid C data type including char, w_char, int, float,

double, bool, or any user-defined object; and variable_list may consist of

one or more identifier names separated by commas. Some valid declarations

are shown here −

int i, j, k;

char c, ch;

float f, salary;

double d;

The line int i, j, k; declares and defines the variables i, j, and k; which

instruct the compiler to create variables named i, j and k of type int.

19

 Self-instructional Material

C Programming

 NOTES

Variables can be initialized (assigned an initial value) in their

declaration. The initialize consists of an equal sign followed by a constant

expression as follows −

type variable_name = value;

Some examples are −

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

For definition without an initialize: variables with static storage duration are

implicitly initialized with NULL (all bytes have the value 0); the initial value

of all other variables are undefined.

2.6. LET US SUM UP

 In this unit, you have learnt about the structure of C programming,

constants and integer and values. This knowledge would make you

understand the section wise structure of C programming language and types

of constants used to develop the C programs for real time problems. Thus,

the C programming unit would have brought you to closer to know the

concept of programming structure and aspects.

2.7. UNIT – END QUESTIONS

1. Discuss about the structure of C Programming.

2. Explain about the constants and its types.

3. Define variables?

2.8. ANSWER TO CHECK YOUR PROGRESS

1. Documentation Section consists of comment lines which include the name of

programmer, the author and other details like time and date of writing the

program. Link Section consists of the header files of the functions that are

used in the program. Definition Section defines all the symbolic constants

are written in definition section. Macros are known as symbolic constants.

The global variables that can be used anywhere in the program are declared

in global declaration section. This section also declares the user defined

functions. main () Function Section defines necessary have one main()

function section in every C program. This section contains two parts,

declaration and executable part. Subprogram Section contains all the user

defined functions that are used to perform a specific task. These user defined

functions are called in the main() function.

2. Integer Constants is an integer literal can be a decimal, octal, or hexadecimal

constant. Floating-point or Real Constants are literal has an integer part, a

decimal point, a fractional part, and an exponent part. Single Character

Constants is simply contains a single character enclosed within ' and ' (a pair

of single quote). String Constants are a sequence of characters enclosed in

double quotes, and they may include letters, digits, special characters, and

20

C Programming

NOTES

Self-instructional Material

blank spaces. Backslash Character constants support some character

constants having a backslash in front of it.
3. A variable is nothing but a name given to a storage area that our programs

can manipulate. Each variable in C has a specific type, which determines the

size and layout of the variable's memory; the range of values that can be

stored within that memory; and the set of operations that can be applied to

the variable.

2.9. SUGGESTED READINGS

1. “Programming in ANSI C”, E. Balagurusamy, McGraw Hill

Publications, Eighth Edition, 2019.

2. “Let Us C”, Yashavant Kanetkar, BPB Publications, Sixteenth

Edition, 2017.

3. “Head First C: A Brain-Friendly Guide”, David Griffiths & Dawn

Griffiths, O’Reilly Publications, 2012.

21

 Self-instructional Material

Operators and Expressions

 NOTES

UNIT III – OPERATORS AND

EXPRESSIONS

Structure

3.1. Introduction

3.2. Objective

3.3. Operators

3.3.1. Arithmetic Operators

3.3.2. Unary Operators

3.3.3. Relational and Logical Operators

3.3.4. The Conditional Operator

3.3.5. Library Functions

3.3.6. Bitwise Operators

3.3.7. The Increment and Decrement Operators

3.3.8 The Sizeof Operator

3.4. Precedence of operators

3.5. Let Us Sum Up

3.6. Unit – End Exercises

3.7. Answer to Check Your Progress

3.8. Suggested Readings

3.1. INTRODUCTION

Operators form expressions by joining individual constants,

variables, array elements as discussed in previous lesson. C includes a large

number of operators which fall into different categories. In this lesson we

will see how arithmetic operators, unary operators, relational and logical

operators, assignment operators and the conditional operators are used to

form expressions. The data items on which operators act upon are called

operands. Some operators require two operands while others require only

one operand. Most operators allow the individual operands to be

expressions. A few operators permit only single variable as operand.

3.2. OBJECTIVES

After going through this lesson you will be able to

 l recognize arithmetic operators

 l explain unary operators

 l define relational, logical, assignment & conditional operators

 l explain library functions

22

Operators and Expressions

NOTES

Self-instructional Material

3.3. OPERATORS

An Operator is a symbol that tells the computer to perform certain

mathematical or logical manipulations. Operators are used in programs to

manipulate data and variables.

Operators are the foundation of any programming language. Thus the

functionality of C language is incomplete without the use of operators.

Operators allow us to perform different kinds of operations on operands. In

C, operators in can be categorized in following categories:

 Arithmetic operators.

 Relational Operators.

 Logical Operators.

 Increment and Decrement Operators.

 Conditional Operators.

 Bitwise Operators.

C supports many operators to perform various kinds of operations. With C

operators, you can do arithmetic operations, comparing data, modifying

variables, combining relationship logically, etc.

C operators operate on one or more operands to produce a value.

 The operators that take one operand are called unary operators.

 The operators that require two operands are called binary operators.

3.3.1. Arithmetic Operator

 C supports almost common arithmetic operators such as +,-,*, / and

modulus operator %. The modulus operator (%) returns the remainder of

integer division calculation. Note that the modulus operator cannot be

applied to a double or float.

Operator Meaning of Operator

+ addition or unary plus

- subtraction or unary minus

* multiplication

/ division

% remainder after division (modulo division)

Table 2: - Arithmetic Operator

Operands can be integer quantities, floating-point quantities or

characters. The modulus operator requires that both operands be integers &

the second operand be nonzero. Similarly, the division operator (/) requires

that the second operand be nonzero, though the operands need not be

integers. Division of one integer quantity by another is referred to as integer

division. With this division the decimal portion of the quotient will be

dropped. If division operation is carried out with two floating- point

23

 Self-instructional Material

Operators and Expressions

 NOTES

numbers, or with one floating point number. & one integer, the result will

be a floating-point quotient.

The example program for arithmetic operator is as follows,

 #include<stdio.h>

 void main()

 {

 int m1,m2,m3,m4,m5,tot,avg;

 clrscr();

 printf(“Enter the five subject marks:”);

 scanf(“%d%d%d%d%d”,&m1,&m2,&m3,&m4,&m5);

 tot=m1+m2+m3+m4+m5;

 avg=tot/5;

 printf(“\n the total for five subject mark is=%d”,tot);

 printf(“\n the average for five subject mark is=%d”,avg);

 getch();

}

3.3.2. Relational Operator
 Relational operators are symbols that are used to test the relationship
between two variables, or between a variable and a constant. The test for
equality is made by means of two adjacent equal signs with no space separating
them. ‘C’ has six relational operators as follows:

Operator Meaning of Operator

== Equal to

> Greater than

< Less than

!= Not equal to

>= Greater than or equal to

<= Less than or equal to

Table 3: - Relational Operator

These operators all fall within the same precedence group, which is

lower than the unary and arithmetic operators. The associativity of these

operators is left-to-right. The equality operators ==and != fall into a

separate precedence group, beneath the relational operators. Their

associativity is also from left-to-right. These relational operator are used to

form logical expression representing condition thet are either true or false.

The resulting expression will be of type integer, since true is represented by

the integer value and false is represented by the value0.

The example program for relational operator is as follows,

 #include<stdio.h>

 void main()

24

Operators and Expressions

NOTES

Self-instructional Material

 {

 int a,b;

 clrscr();

 printf(“Enter the a and b value”);

 scanf(“%d%d”, &a, &b);

 if(a>b)

 {

 printf(“a is greater than b”);

 }

 Else

 {

 printf(“b is greater than a”);

 }

 getch();

 }

3.3.3. Logical Operator

 C logical operators to connect expressions and/or variables to form

compound conditions. The C logical expression returns an integer (int). The

result has value 1 if the expression is evaluated to true otherwise it returns

0. C uses the following symbols for the Boolean operations AND, OR, and

NOT.

C has the following three logical operators.

 && (logical AND)

 || (logical OR)

 ! (logical NOT)

These operators are referred to as logical and, logical or, respectively. The

result of a logical and operation will be true only if both operands are true,

whereas the result of a logical or operation will be true if either operand is

true or if both operands are true. The logical operators act upon operands

that are themselves logical expressions.

Each of the logical operators falls into its own precedence group.

Logical and has a higher precedence than logical or. Both precedence

groups are lower than the group containing the equality operators. The

associativity is left to right. 'C' also includes the unary operator !, that

negates the value of a logical expression. This is known as logical negation

or logical NOT operator. The associativity of negation operator is right to

left.

The following program illustrate the operating procedure of logical

operator.

 #include <stdio.h>

 #include<conio.h>

 void main()

 {

 int a,b,c;

 clrscr();

 printf(“Enter the a, b and c value”);

 scanf(“%d%d%d”,&a,&b,&c);

 if ((a>b) && (a>c))

 {

25

 Self-instructional Material

Operators and Expressions

 NOTES

 printf(“ a is greater than b & c”);

 }

 else if (b>c)

 {

 printf(“b is greater than c”);

 }

 else

 {

 Printf("c is greater than b”);

 }

 getch();

 }

3.3.4. The Conditional Operator

 The conditional operators in C language are known by two more

names

 Ternary Operator

 ? : Operator

It is actually the if condition that we use in C language decision

making, but using conditional operator, we turn the if condition statement

into a short and simple operator.

The syntax of a conditional operator is:

expression 1 ? expression 2: expression 3

 The question mark "?" in the syntax represents the if part.

 The first expression (expression 1) generally returns either true or

false, based on which it is decided whether (expression 2) will be

executed or (expression 3)

 If (expression 1) returns true then the expression on the left side of " :

" i.e (expression 2) is executed.

 If (expression 1) returns false then the expression on the right side

of " : " i.e (expression 3) is executed.

The following example illustrate how to use the conditional operator.

 #include <stdio.h>

 #include<conio.h>

 void main()

 {

 int a,b,c;

 clrscr();

 printf(“Enter the a & b value”);

 scanf(“%d%d”, &a,&b);

 c=(a>b)?a:b;

 printf(“The greater value of a & b is = %d”,c);

 getch();

 }

3.3.5. Library Functions

 Library functions carry out various commonly used operations or

calculations. Some functions return a data item to their access point,

others indicate whether a condition is true or false by returning 1 or 0

26

Operators and Expressions

NOTES

Self-instructional Material

respectively, still others carry out specific operations on data items but do

not return anything. Features which tend to be computer dependent are

generally written as library functions.

 Functionally similar library functions are usually grouped together

as object programs in separate library files. These library files are supplied

as a part of each C compiler. A library function is accessed simply by

writing the function name, followed by a list of arguments that represent

information being passed to the function. The arguments must be enclosed

in parentheses and separated by commas. The arguments can be constants,

variable names or more complex expressions. The parentheses must be

present, even if there are no arguments, A function that returns a data item

can appear anywhere within an expression in place of a constant or an

identifier. A function that carries out operations on data items but does not

return anything can be accessed simply by writing the function name, since

this type of function reference constitutes an expression statement. In order

to use a library function it may be necessary to include certain specific

information within the main portion of the program. This information is

generally stored in special files supplied with the compiler. Thus, the

required information can be obtained simply by accessing these special

files. This is accomplished with the preprocessor statement.

Header file Description

stdio.h

This is standard input/output header file - I/O

functions are declared

conio.h This is console input/output header file

string.h

All string related functions are defined in this

header file

stdlib.h

This header file contains general functions

used in C programs

math.h

All maths related functions are defined in this

header file

time.h

This header file contains time and clock

related functions

ctype.h

All character handling functions are defined

in this header file

stdarg.h

Variable argument functions are declared in

this header file

setjmp.h This file contains all jump functions

locale.h This file contains locale functions

errno.h Error handling functions are given in this file

http://fresh2refresh.com/c/c-function/stdio-h-library-functions/
http://fresh2refresh.com/c/c-function/conio-h-library-functions/
http://fresh2refresh.com/c/c-function/string-h-library-functions/
http://fresh2refresh.com/c/c-function/c-stdlib-h-library-functions/
http://fresh2refresh.com/c/c-function/c-math-h-library-functions/
http://fresh2refresh.com/c/c-function/c-time-h-library-functions/
http://fresh2refresh.com/c/c-function/c-ctype-h-library-functions/
http://fresh2refresh.com/c/c-function/c-all-other-library-functions/
http://fresh2refresh.com/c/c-function/c-all-other-library-functions/
http://fresh2refresh.com/c/c-function/c-all-other-library-functions/
http://fresh2refresh.com/c/c-function/c-all-other-library-functions/

27

 Self-instructional Material

Operators and Expressions

 NOTES

Table 4: - Library Functions

3.3.6. Bitwise Operator

 During computation, mathematical operations like: addition,

subtraction, multiplication, division, etc are converted to bit-level which

makes processing faster and saves power.

Bitwise operators are used in C programming to perform bit-level

operations.

Operators Meaning of Operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

>> Shift right

Table 5: - Bitwise Operator

 Binary AND Operator copies a bit to the result if it exists in both operands.

 Binary OR Operator copies a bit if it exists in either operand.

 Binary XOR Operator copies the bit if it is set in one operand but not both.

 Binary One's Complement Operator is unary and has the effect of 'flipping'

bits.

 Binary Left Shift Operator. The left operands value is moved left by the

number of bits specified by the right operand.

 Binary Right Shift Operator. The left operands value is moved right by the

number of bits specified by the right operand.

3.3.7. Increment and Decrement Operator

 C has two very useful operators that are not generally found in other

languages. These are,

 ++ - The increment Operator:

 - - - The decrement Operator.

The increment operator causes its operand to increase by one,

whereas the decrement operator causes its operand to be decreased by one.

The operand used with each of these operators must be a single variable.

For example, x is an integer variable that has been assigned a value of 10.

The expression ++ x, which is equivalent to writing x= x+1, causes the

value of x to be creased to 11. Similarly the expression --x, which is

equivalent to x=x-1, causes the original value of x to be decreased to 9. The

increment and decrement operators can each be utilized in two different

ways, depending on whether the operator is written before or after the

28

Operators and Expressions

NOTES

Self-instructional Material

operand. If the operator precedes the operand, then the value of operand will

be altered before it is used for its intended purpose within the program. If,

however the operator follows the operand then the value of the operand will

be changed after it is used. Similarly for decrement operator the current

value of x will be 9 if we say -- x.

The following example illustrate the increment and decrement operator.

 #include<stdio.h>

 #include<conio.h>

 void main() {

 int n,i;

 clrscr();

 printf(“Enter the value of n”);

 scanf(“%d”, &n);

 for(i=0;i<=n;i++)

 {

 printf(“\n the value of i is = %d”,i);

 }

 getch(); }

3.3.8. The Sizeof() Operator

The size of is a compiler time operator and, when used with an

operand, it returns the number of bytes the operand occupies. Sizeof()

operator is used to return the size of a variable. Suppose we have an integer

variable 'i', so the value of sizeof(i) will be 4 because on declaring the

variable 'i' as of type integer, the size of the variable becomes 4 bytes.

Example:

1) m = sizeof(sum);

2) n = sizeof(long int)

3) k = sizeof(235L)

3.3.9. Precedence of Operators

 Operator precedence determines the grouping of terms in an

expression and decides how an expression is evaluated. Certain operators

have higher precedence than others; for example, the multiplication operator

has a higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because

operator * has a higher precedence than +, so it first gets multiplied with

3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the

table, those with the lowest appear at the bottom. Within an expression,

higher precedence operators will be evaluated first.

In general, the precedence of the operators in an expression

determines whether it is necessary for you to put parentheses in to get the

result you want, but if you are unsure of the precedence of the operators you

are using, it does no harm to put the parentheses in. Below table shows the

order of precedence for all the operators in C, from highest at the top to

lowest at the bottom.

29

 Self-instructional Material

Operators and Expressions

 NOTES

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^=

|=

Right to left

Comma , Left to right

Table 6: - Operator Precedence

3.4. LET US SUM UP

 In this unit, you have learnt about the various types of operators and

precedence of operators for evaluating the expression. This knowledge

would make you understand the available operators that C language

supports and its syntax and priority of operators while executing the

expressions. Thus, the operators and expressions unit would have brought

you to closer to know the concept of operator usage and evaluation of

expressions also.

3.5. UNIT – END QUESTIONS

1. List out various operators supported by C language.

2. Describe about the precedence of operators.

30

Operators and Expressions

NOTES

Self-instructional Material

3.6. ANSWER TO CHECK YOUR PROGRESS

1. An Operator is a symbol that tells the computer to perform certain

mathematical or logical manipulations. Operators are used in programs to

manipulate data and variables. In C, operators in can be categorized in

following categories:

Arithmetic operators, Relational Operators, Logical Operators, Increment

and Decrement Operators, Conditional Operators, and Bitwise Operators.

C supports many operators to perform various kinds of operations.

With C operators, you can do arithmetic operations, comparing data,

modifying variables, combining relationship logically, etc.

2. Operator precedence determines the grouping of terms in an expression and

decides how an expression is evaluated. Certain operators have higher

precedence than others; for example, the multiplication operator has a

higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because

operator * has a higher precedence than +, so it first gets multiplied with

3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the

table, those with the lowest appear at the bottom. Within an expression,

higher precedence operators will be evaluated first.

In general, the precedence of the operators in an expression

determines whether it is necessary for you to put parentheses in to get the

result you want, but if you are unsure of the precedence of the operators you

are using, it does no harm to put the parentheses in.

3.7. SUGGESTED READINGS

1. “Programming with ANSI and Turbo C”, Ashok Kamthane, Pearson

Education India, 2006.

2. “C Programming Absolute Beginners Guide”, Greg Perry & Dean Miller,

Que Publishing, Third Edition, 2013.

3. “Programming in C”, Stephen G. Kochan, Addison-Wesley Professional,

Fourth Edition, 2014.

31

 Self-instructional Material

Data Types and

Input/output Operators

 NOTES

UNIT IV – DATA TYPES AND

INPUT/OUTPUT OPERATORS

Structure

4.1. Introduction

4.2. Objective

4.3. Data Types

4.3.1. Floating Point Numbers

4.3.2. Converting integers and Floating-point and vice-versa

4.3.3. Mixed-Mode Expressions

4.3.4. The type cast Operator

4.3.5. The type char

4.4. Keywords

4.5. Character Input and Output

4.6. Formatted input and output

 4.6.1. The gets() and outs() functions

4.7. Interactive Programming

4.8. Let Us Sum Up

4.9. Unit – End Exercises

4.10. Answer to Check Your Progress

4.11. Suggested Readings

4.1. INTRODUCTION

In ‘C’ language input and output of data is done by a collection

of library functions like getchar, putchar, scanf, printf, gets and puts.

These functions permit the transfer of information between the

computer and the standard input/output devices. An input/ output

function can be accessed from anywhere within a program simply by

writing the function name, followed by a list of parameters enclosed in

parentheses. Some input/output functions do not require parameters, but

the empty parentheses must appear. In this lesson we will discuss some

input/output functions in detail.

4.2. OBJECTIVES

After going through this lesson you would be able to

 Explain getchar function

 Define putchar function

 Describe gets & puts function

 Use interactive programming

4.3. DATA TYPES

Data types specify how we enter data into our programs and

what type of data we enter. C language has some predefined set of data

32

Data Types and

Input/output Operators

NOTES

Self-instructional Material

types to handle various kinds of data that we can use in our program.

These data types have different storage capacities. C language supports

the following different types of data types:

1. Primary data types:

These are fundamental data types in C namely integer(int),

floating point(float), character(char) and void.

2. Derived data types:

Derived data types are nothing but primary data types but a little

twisted or grouped together like array, structure, union and pointer.

3. Enumerated types
They are again arithmetic types and they are used to define

variables that can only assign certain discrete integer values throughout

the program.

4. The type void
The type specifier void indicates that no value is available.

Figure 4: - C Data Types

Data type determines the type of data a variable will hold. If a

variable x is declared as int. it means x can hold only integer values.

Every variable which is used in the program must be declared as what

data-type it is. The array types and structure types are referred

collectively as the aggregate types. The type of a function specifies the

type of the function's return value. Each data type requires different

memory requirements which may vary from one C compiler to another.

Integer Types

 Integers are whole numbers that can have both zero, positive and

negative values but no decimal values. For example, 25, 52.

Type Size (bytes) Format Specifier

int at least 2, usually 4 %d

char 1 %c

float 4 %f

33

 Self-instructional Material

Data Types and

Input/output Operators

 NOTES

Type Size (bytes) Format Specifier

double 8 %lf

short int 2 usually %hd

unsigned int at least 2, usually 4 %u

long int at least 4, usually 8 %li

long long int at least 8 %lli

unsigned long int at least 4 %lu

unsigned long long int at least 8 %llu

Table 7: - Integer Data types

If short int and int both have the same memory requirements

(e.g, 2 bytes), then long int will generally have double the requirements.

(e.g., 4 bytes) Similarly if int & long int both have the same memory

requirements (e.g., 4 bytes) then short int will have half the memory

requirements (e.g. 2 bytes). An unsigned int means all the bits are used

to represent the numerical value unlike in the case of ordinary int in

which the leftmost bit is reserved for the sign. Thus the size of an

unsigned int can be approximately twice as large as an ordinary int. For

example if an ordinary int can vary from -32,768 to +32,767 then an

unsigned int can vary from 0 to 65,535.

4.3.1. Floating Point Numbers

 The following table provides the details of standard floating-

point types with storage sizes and value ranges and their precision –

Type Storage size Value range

float 4 byte 1.2E-38 to 3.4E+38

double 8 byte 2.3E-308 to 1.7E+308

long double 10 byte 3.4E-4932 to 1.1E+4932

Table 8: - Floating Point Numbers

The header file float.h defines macros that allow you to use these values

and other details about the binary representation of real numbers in your

programs.

As discussed above that floating point numbers have a decimal

point. The C compiler differentiates between floating point numbers &

integers because they are stored differently in the computer. Floating

point numbers sometimes are referred to as real numbers. They include

34

Data Types and

Input/output Operators

NOTES

Self-instructional Material

all the numbers between the integers. Some of the differences are listed

below between floating point numbers and integer.

1. Integer includes only whole numbers, but floating point numbers can be

either whole or fractional.

2. Integers are always exact, whereas floating point numbers sometimes

can lead to loss of mathematical precision.

3. Floating point operations are slower in execution and often occupy more

memory than integer operations.

Floating point numbers may also be expressed in scientific

notation. For example, the expression 2345.34e6 represents a floating

point number in scientific notation. The letter e stands for the word

exponent. The exponent is the whole number following the letter e; the

part of the number before the letter e is called the mantissa. The number

2345.34e6 should be interpreted as: 2345.34 times 10 to the 6
th

 power.

4.3.3. Mixed-Mode Expressions

An expression is a combination of variables constants and

operators written according to the syntax of C language. In C every

expression evaluates to a value i.e., every expression results in some

value of a certain type that can be assigned to a variable.

Rules for Evaluation Mixed Mode Arithmetic Expression

Rule 1
Evaluate Expressions always from Left to Right.

For Example: 3 + 5 - 4 = 4.

Rule

Priority of an operator is also considered while calculating an

expression.

A mixed mode expression is an expression in which the two

operands are not of the same time. For example one might be an int and

another float.

Examples: 1.5*3, 5/3.0, 4+1.1, -3-3.0

In general the integral value will be promoted to a real value and

the result will be a real. In general try to avoid mixing types when doing

math unless the answer is really obvious.

For example take:

6.0 * (1/2)

The answer to that is 0, and NOT 3. The division in the brackets

happens first. So you get integer division 1/2 = 0. Then the 0 gets

promoted to 0.0 and the final answer is 6.0 * 0.0 = 0.0

4.3.4. The type cast Operator

 Type casting is a way to convert a variable from one data type to

another data type. For example, if you want to store a long value into a

simple integer then you can typecast long to int. You can convert values

from one type to another explicitly using the cast operator. There are

two types of type casting in c languages that are Implicit conversions

and Explicit Conversions.

Type casting is a way to convert a variable from one data type to

another data type. For example, if you want to store a 'long' value into a

simple integer then you can type cast 'long' to 'int'. You can convert the

35

 Self-instructional Material

Data Types and

Input/output Operators

 NOTES

values from one type to another explicitly using the cast operators

follows −

(type_name) expression

Implicit Type Conversion

When the type conversion is performed automatically by the

compiler without programmer’s intervention, such type of conversion is

known as implicit type conversion or type promotion.

Explicit Type Conversion

The type conversion performed by the programmer by posing the

data type of the expression of specific type is known as explicit type

conversion. The explicit type conversion is also known as type casting.

The following rules have to be followed while converting the expression

from one type to another to avoid the loss of information:

1. All integer types to be converted to float.

2. All float types to be converted to double.

3. All character types to be converted to integer.

4.3.5. The type char

 The char type is used to represent individual characters. Hence,

the char type will generally require only1 byte of memory. With most

compilers, a char data type will permit a range of values extending from

0 to 255.

 A single character can be defined as a character type data.

Characters are usually stored in 8 bits of internal storage. The qualifier

signed or unsigned may be explicitly applied to char. While unsigned

chars have values between 0 and 255, signed chars have values from -

128 to 127.

 Every identifier that represents a number or a character within a

C program must be associated with one of the basic data types before

the identifier appears in an executable statement.

4.4. KEYWORDS

 C programs are constructed from a set of reserved words which

provide control and from libraries which perform special functions. The

basic instructions are built up using a reserved set of words, such as

main, for, if, while, default, double, extern, for, and int, etc., C demands

that they are used only for giving commands or making statements. You

cannot use a default, for example, as the name of a variable. An attempt

to do so will result in a compilation error.

Restrictions apply to keywords

 Keywords are the words whose meaning has already been

explained to the C compiler and their meanings cannot be changed.

 Keywords can be used only for their intended purpose.

 Keywords cannot be used as user-defined variables.

 All keywords must be written in lowercase.

Keywords have standard, predefined meanings in C.

These keywords can be used only for their intended purpose; they

36

Data Types and

Input/output Operators

NOTES

Self-instructional Material

cannot be used as programmer-defined identifiers. Keywords are an

essential part of a language definition. They implement specific features

of the language. Every C word is classified as either a keyword or an

identifier. A keyword is a sequence of characters that the C compiler

readily accepts and recognizes while being used in a program. Note that

the keywords are all lowercase. Since uppercase and lowercase

characters are not equivalent, it is possible to utilize an

uppercase keyword as an identifier.

32 Keywords in C

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 9: - Keywords in C

4.5. CHARACTER INPUT AND OUTPUT

 In ‘C’ language input and output of data is done by a collection

of library functions like getchar, putchar, scanf, printf, gets and puts.

These functions permit the transfer of information between the

computer and the standard input/output devices. The library function

getchar and putchar as the name suggests, allow single characters to be

transferred into and out of the computer, scanf and printf permit the

transfer of single characters, numerical values and strings, gets and puts

facilitate the input and output of strings. An input/ output function can

be accessed from anywhere within a program simply by writing the

function name, followed by a list of parameters enclosed in parentheses.

Some input/output functions do not require parameters, but the empty

parentheses must appear. ‘C’ includes a collection of header file that

provide necessary information in support of the various library

functions. The header file stdio.h contains the information about

input/output library functions.

getchar Function

The getchar function reads a single character from standard

input. It takes no parameters and its returned value is the input

37

 Self-instructional Material

Data Types and

Input/output Operators

 NOTES

character. In general, a reference to the getchar function is written as

character variable = getchar();

For example char c;

c= getchar () ;

The second line causes a single character to be entered from the

standard input device and then assigned to c. If an end-of-file condition

is encountered when reading a character with the getchar function, the

value of the symbolic constant EOF will automatically be returned. This

function can also be used to read multicharacter strings, by reading one

character at a time within a multipass loop.

putchar() Function

The standard C function that prints or displays a single character

by sending it to standard output is called putchar. This function takes

one argument, which is the character to be sent. It also returns this

character as its result. If an error occurs, an error value is returned.

Therefore, if the returned value of putchar is used, it should be declared

as a function returning an int.

When putchar is used, however, each character must be output

separately. The parameter to the function calls in the given statements is

character constants, represented between apostrophes as usual. Of

course, the arguments could be character variables instead. Two

functions that require FILE pointers are getc and putc. These functions

are similar to getchar and putchar, except that they can operate on files

other than the standard input and output. The getc function is called with

one argument, which is a FILE pointer representing the file from which

the input is to taken. The expression getc(stdin) is similar to getchar()

and the expression putc(c, stdout) is same as putchar(c).

4.5. FORMATTED INPUT AND OUTPUT

 These functions read and write all types of data values. Require

conversion symbols to identify the data type. The formatted functions

return the values after execution. The return value is equal to the

number of variables successfully read/written.

Scanf() Function: -

 Input data can be entered into the computer from a standard

input device by means of C library function scanf. This function can be

used to enter any combination of numerical values, characters single

character and strings. The function returns the number of data items that

have been entered successfully. In general terms, the scanf function is

written as

scanf (string, parameter 1, parameter 2…, parameter n);

Where string= string containing certain required formatting

information, and Parameter 1, parameter 2.. = parameters that represent

the individual input data item. The control string or string comprises

individual groups of characters, with one character group for each input

data item. Each character group must start with percent sign (%). In the

string, multiple character groups can be contiguous, or separated by

38

Data Types and

Input/output Operators

NOTES

Self-instructional Material

white space characters. The conversion character that is used with %

sign are many in number and all have different meaning corresponding

to type of data item that is to be input from keyboard.

The parameters are written as variables or arrays, whose types

match the corresponding characters groups in the control string. Each

variable name must be preceded by an ampersand (&).

Conversion

character

Meaning

c type of data item is single character

d type of data item is decimal integer

e type of data item is floating-point value

f type of data item is floating-point value

h type of data item is short-integer

i
type of data item is decimal, hexadecimal or

octal integer

o type of data item is octal integer

s type of data item is string

u type of data item is unsigned decimal integer

Table 10: - Conversion Character

If two or more data items are entered, they must be separated by

white space characters. Data items may continue onto two or more lines,

since the newline character is considered to be a whitespace character.

Whitespace characters may be included within the brackets, thus

accommodating strings that contain such characters.

Printf() function: -

 printf function moves data from the computer’s memory to the

standard output device, whereas the scanf function enters data from the

standard input device and stores it in the computer’s memory. The

general form is:

printf(string, parameter1, parameter2,……, parameter n)

where string refers to a string that contains formatting

information, and parameter 1, parameter2… parameter n are arguments

that represents the individual output data items. The parameters can be

written as constants, single variable or array names or more complex

expressions. Unlike scanf function, the parameters in a printf function

do not represent memory addresses and therefore they are not preceded

by ampersand (&) sign. The control string or string is composed of

individual groups of characters, with one character group for each

output data item. Each character group must start with a percent sign

like in scanf function followed by a conversion character indicating the

type of the corresponding data item. Multiple character groups can be

contiguous, or they can be separated by other characters, including

whitespace characters.

The printf statement to display three variables is,

printf(“%s %d %f”’, name, roll_no, marks);

39

 Self-instructional Material

Data Types and

Input/output Operators

 NOTES

4.6.1. The gets() and puts() functions

 ‘C’ contains a number of other library functions that permit

some form of data transfer into or out of the computer. Gets and puts

functions facilitate the transfer of strings between the computer and the

standard input/output devices. Each of these functions accepts a single

argument or parameter. The parameter must be a data item that

represents a string. The string may include whitespace characters. In the

case of gets, the string will be entered from the keyboard and will

terminate with a newline character. The gets and puts functions are

alternative use for scanf and printf for reading and displaying strings.

For example:

char school[40];

gets(school);

puts(school);

These lines use the gets and puts to transfer the line of text into and out

of the computer. When this program is executed, it will give the same

result as that with scanf and printf function for input and output of given

variable or array.

4.7. INTERACTIVE PROGRAMMING

 Interactive programming means to create an interactive dialog

between user and computer. This is some sort of question and answer.

This can be created by alternate use of scanf and printf functions. This

type of interactive programming is useful in the case of useful reports or

data entry

4.8. LET US SUM UP

 In this unit, you have learnt about the data types of C language

supports; keywords used and formatted input and output functions. This

knowledge would make you understand the various data types supported

by C language and usage of keywords and implementation of formatted

input and output functions used in program development. Thus, the data

types and input and output operators unit would have brought you to

closer to know the concept of data types and the use of input and output

functions.

4.9. UNIT – END QUESTIONS

1. Classify the C data types.

2. Describe about the use of keywords in C.

3. How to use the formatted input/output functions in C language?

4.10. ANSWER TO CHECK YOUR PROGRESS

1. C language has some predefined set of data types to handle

various kinds of data that we can use in our program. These data types

have different storage capacities. C language supports the following

different types of data types: Primary data types are fundamental data

types in C namely integer (int), floating point(float), character(char)

40

Data Types and

Input/output Operators

NOTES

Self-instructional Material

and void. Derived data types are nothing but primary data types but a

little twisted or grouped together like array, structure, union and pointer.

Enumerated types are again arithmetic types and they are used to define

variables that can only assign certain discrete integer values throughout

the program. The type void type specifier void indicates that no value is

available.

2. C programs are constructed from a set of reserved words which

provide control and from libraries which perform special functions. The

basic instructions are built up using a reserved set of words, such as

main, for, if, while, default, double, extern, for, and int, etc., C demands

that they are used only for giving commands or making statements. You

cannot use a default, for example, as the name of a variable.

3. These functions read and write all types of data values. Require

conversion symbols to identify the data type. The formatted functions

return the values after execution. The return value is equal to the

number of variables successfully read/written.

Scanf() Function: - Input data can be entered into the computer from a

standard input device by means of C library function scanf. This

function can be used to enter any combination of numerical values,

characters single character and strings.

Printf() function: - printf function moves data from the computer’s

memory to the standard output device, whereas the scanf function enters

data from the standard input device and stores it in the computer’s

memory.

4.11. SUGGESTED READINGS

1. “C Primer Plus”, Stephen Prata, Addison-Wesley Professional,

Sixth Edition, 2013.

2. “Sams Teach Yourself C Programming in One Hour a Day”,

Bradley L. Jones, Sams Publishing, Seventh Edition, 2013.

3. “C-How to Program”, Paul Deitel & Harvey Deitel, Prentice-Hall

Publications, Seventh Edition, 2013.

41

 Self-instructional Material

Control Statements

and Decision Making

 NOTES

BLOCK II: BASICS OF OPERATOR

AND DATATYPES

UNIT V – CONTROL STATEMENTS AND

DECISION MAKING

Structure

5.1. Introduction

5.2. Objective

5.3. The go to statement

5.4. The if statement

5.5. The if-else statement

5.6. Nesting of if statement

5.7. The Conditional expression

5.8. The switch statement

5.9. The while loop

5.10. The do…while loop

5.11. The for loop

5.12. The nesting of for loop

5.13. The break statement and continue statement

5.14. Let Us Sum Up

5.15. Unit – End Exercises

5.16. Answer to Check Your Progress

5.17. Suggested Readings

5.1. INTRODUCTION

So far we have seen that in C programs the instructions are executed in

the same order in which they appear in the program. Each instruction is

executed once and once only. Programs do not include any logical control

structures. Most programs, however, require that a group of instructions be

executed repeatedly, until some logical condition has been satisfied. This is

known as looping. Most of the programs require that a logical test be carried

out at some particular point within the program. An action will then be carried

out whose exact nature depends upon the outcome of the logical test. This is

known as conditional execution.

5.2. OBJECTIVES

After going through this lesson you would be able to

 Define 'while' statement, for statement and nested loops.

 Explain switch statement and goto statement.

42

Control Statements and

Decision Making

NOTES

Self-instructional Material

5.3. THE goto() STATEMENT

The goto statement is used to alter the normal sequence of program execution

by transferring control to some other part of the program. It is written as

goto label;

Where label is an identifier used to label the target statement to which control

will be transferred. Control may be transferred to any other statement within the

program. The target statement must be labeled, and the label must be followed

by a colon. Thus the target statement will appear as

Label : statement

No two statements cannot have the same label Goto statements has many

advantages like branching around statements or groups of statements under

certain conditions, jumping to the end of a loop under certain conditions, thus

bypassing the remainder of the loop during the current pass, jumping

completely out of a loop under certain conditions, thus terminating the

execution of a loop..

Flow Diagram

Figure 5: - Goto Statement Flow Diagram

The following example illustrate the functions goto statement,

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 double x,y;

 clrscr();

 read:

 scanf(“%f”, &x);

 if (x<0) goto read;

 y=sqrt(x);

 printf(“%f %f”. x,y);

 goto read;

 getch();

 }

43

 Self-instructional Material

Control Statements

and Decision Making

 NOTES

5.4. THE if STATEMENT

 Decision making is an important part of programming. Every

programming language supports decision making statements allowing

programmers to branch according to the condition. In C programming

language, if statement is used to check condition and make decision. The

decisions or statements are enclosed inside curly braces, however if only a

single statement has to be executed, curly braces are not mandatory.

Depending upon the number of conditions to be checked, we have

following types of if statement:

1. if statement

2. if ... else statement

3. Nested if

Simple if Statement

if statement is used for branching when a single condition is to be

checked. The condition enclosed in if statement decides the sequence of

execution of instruction. If the condition is true, the statements inside if

statement are executed, otherwise they are skipped. In C programming

language, any non zero value is considered as true and zero or null is

considered false.

Syntax of if statement

If (condition)

{

 Statements;

 …. …. ….

 …. …. ….

}

Flowchart of if statement

Figure 6: - If Statement Flow Diagram

The following program illustrate the functions of the simple if statement.

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int a,b,c,d;

 float ratio;

 clrscr();

 printf(“Enter four integer values”);

https://www.programtopia.net/c-programming/docs/if-statements#if-statement
https://www.programtopia.net/c-programming/docs/if-statements#if-else-statement
https://www.programtopia.net/c-programming/docs/if-statements#nested-if

44

Control Statements and

Decision Making

NOTES

Self-instructional Material

 scanf(%d%d%d%d”,&a,&b,&c,&d);

 if (c-d != 0)

 {

 ratio = (float)(a+b)/(float)(c-d);

 printf(“Ratio=%f”,ratio);

 }

 getch();

 }

5.5. THE if…else STATEMENT

 if ... else statement is a two way branching statement. It consists of two

blocks of statements each enclosed inside if block and else block respectively.

If the condition inside if statement is true, statements inside if block

are executed, otherwise statements inside else block are executed. Else block is

optional and it may be absent in a program.

Syntax of if...else statement

If (test_expression)

{

 //execute your code

}

else

{

 //execute your code

}

Flowchart for if…else statement

Figure 7: - Flow Diagram of If…Else Statement

Both if and else clause are terminated by semicolons. Let us consider an

example of if…else statement.

#include main()

{

char grade;

45

 Self-instructional Material

Control Statements

and Decision Making

 NOTES

printf(“Enter a character value for grade:”);

scanf(“%c”, &grade);

if(grade= =’A’)

printf(“grade is excellent \n”);

else

printf(“grade is other than excellent\n");

}

The user can use compound statements both in if and else statements.

The first printf is executed if and only if grade is equal to ‘A’, if grade is not

equal to ‘A’, the first printf is ignored, and the second printf, the one following

the word else, is executed.

5.6. Nesting of if STATEMENT

 When a if statement is kept inside another if statement, it is called

nested if statement. If Else statement in C allows us to print different

statements depending upon the expression result (TRUE, FALSE).

Sometimes we have to check further even when the condition is TRUE. In

this situation, we can use these C Nested IF statements but be careful while

using it. Nested if statements are used if there is a sub condition to be tested.

The depth of nested if statements depends upon the number of conditions to

be checked.

The syntax for a nested if statement is as follows −

if(boolean_expression 1)

{

 If (boolean_expression 2)

{

 /* Executes when the boolean expression 2 is true */

 }

}

Figure 8: - Flowchart for Nesting of if statement

https://www.tutorialgateway.org/if-else-statement-in-c/

46

Control Statements and

Decision Making

NOTES

Self-instructional Material

It is very important to be sure which else clause goes with which if

clause. The rule is that each else matches the nearest if preceding it which has

not already been matched by an else. Addition of braces prevents any

association between the if statement within the braces and the else clause

outside them. Even where braces are not necessary, they may still be used to

promote clarity.

The following example illustrate the nesting of if…else statement.

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 float a,b,c;

 printf(“Enter three values”);

 scanf(“%f%f%f”,&a,&b,&c);

 printf(“The Largest Value is”);

 if (a>b)

 {

 if (a>c)

 {

 printf(“A is greater”);

 else

 printf(“C is greater”);

 }

 else

 {

 if (c>b)

 printf(“C is greater”);

 else

 printf(“B is greater”);

 }

 }

5.7. CONDITIONAL EXPRESSION

The statements

If(a>b)

z=a;

else

 z=b;

compute in z the maximum of a and b. The conditional expression, written with

the ternary operator ``?:'', provides an alternate way to write this and similar

constructions. In the expression

expr1 ? expr2 : expr3

the expression expr1 is evaluated first. If it is non-zero (true), then the

expression expr2 is evaluated, and that is the value of the conditional

expression. Otherwise expr3 is evaluated, and that is the value. Only one

of expr2 and expr3 is evaluated. Thus to set z to the maximum of a and b,

z=(a < b) ? a: b; /* z = max(a, b) */

47

 Self-instructional Material

Control Statements

and Decision Making

 NOTES

It should be noted that the conditional expression is indeed an expression, and it

can be used wherever any other expression can be. If expr2 and expr3 are of

different types, the type of the result is determined by the conversion rules

discussed earlier in this chapter. For example, if f is a float and n an int, then

the expression

(n > 0) ? f : n
is of type float regardless of whether n is positive.

Parentheses are not necessary around the first expression of a

conditional expression, since the precedence of ?:is very low, just above

assignment. They are advisable anyway, however, since they make the

condition part of the expression easier to see.

The conditional expression often leads to succinct code. For example,

this loop prints n elements of an array, 10 per line, with each column separated

by one blank, and with each line (including the last) terminated by a newline.

for (I = 0; I < n; i++)

 printf(“%6d %c”, a[i], (i%10==9 || i==n-1) ? ‘\n’ : ‘’);
A newline is printed after every tenth element, and after the n-th. All

other elements are followed by one blank. This might look tricky, but it's more

compact than the equivalent if-else. Another good example is

printf(“You save %d items %s \n”, n, n==1 ? “” : “s”);

5.8. THE SWITCH STATEMENT

The switch statement causes a particular group of statements to be chosen

from several available groups. The selection is based upon the current value of

on expression that is included within the switch statement. The general form

of the switch statement is

switch (expression) statement

Where expression results in an integer value. Expression may also be of

type char, since individual characters have equivalent integer values. The

embedded statement is generally a compound statement that specifies alternate

courses of action. Each alternative is expressed as a group of one or more

individual statements within the overall embedded statement. For each

alternative, the first statement within the group must be preceded by one or

more case labels. The case labels identify the different groups of statements and

distinguish them from one another. The case labels must therefore be unique

within a given switch statement.

Thus, the switch statement is in effect an extension of the familiar

if…else statement. Rather than permitting maximum of only two branches, the

switch statement permits virtually any number of branches.

In general terms, each group of statements is written as

switch(expression) {

 case constant-expression :

 statement(s);

 break; /* optional */

 case constant-expression :

 statement(s);

 break; /* optional */

 /* you can have any number of case statements */

48

Control Statements and

Decision Making

NOTES

Self-instructional Material

 default : /* Optional */

 statement(s);

}

The following rules apply to a switch statement −

 The expression used in a switch statement must have an integral or

enumerated type, or be of a class type in which the class has a single conversion

function to an integral or enumerated type.

 You can have any number of case statements within a switch. Each case

is followed by the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the

variable in the switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements

following that case will execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow

of control jumps to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow

of control will fall through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must

appear at the end of the switch. The default case can be used for performing a

task when none of the cases is true. No break is needed in the default case.

Figure 9: - The Switch Statement Flowchart

Nested Switch

In C, we can have an inner switch embedded in an outer switch. Also,

the case constants of the inner and outer switch may have common values and

without any conflicts.

The following program illustrates switch statement of C statement.

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int a,b,c,s;

 clrscr();

 printf(“1. Addition”);

 printf(“2. Subtraction”);

 printf(“3. Multiplication”);

 printf(“4. Division”);

49

 Self-instructional Material

Control Statements

and Decision Making

 NOTES

 printf(“Choose the option”);

 scanf(“%d”,&s);

 switch(s)

 {

 case 1:

 c=a+b;

 printf(“The Addition result is = %d”,c);

 break;

 case 2:

 c=a-b;

 printf(“The Subtraction result is = %d”,c);

 break;

 case 3:

 c=a*b;

 printf(“The Multiplication result is = %d”,c);

 break;

 case 4:

 c=a/b;

 printf(“The Division result is = %d”,c);

 break;

 default:

 printf(“Wrong Choice”);

 break;

 }

 getch();

 }

5.9. THE WHILE LOOP
 In general, statements are executed sequentially: The first statement in a

function is executed first, followed by the second, and so on. Programming

languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements

multiple times. Given below is the general form of a loop statement in most of

the programming languages –

The while statement is used to carry out looping operations. The general

form of the statement is

while(condition)

{

 statement(s);

}

The loop operates in the following fashion: The value of the test

expression enclosed in parentheses is evaluated. If the result is true, then the

program statement (the body of the loop) is executed. The statement may be a

compound statement. Then the test expression, which may be just as complex

as any of those found in if statement is evaluated again. If it is again true, the

statement is executed once more. This process continues until the test

expression becomes false. At that point, the loop is terminated immediately,

50

Control Statements and

Decision Making

NOTES

Self-instructional Material

and program execution continues with the statement (if any) following the

while loop. If there are no more statements, the program terminates.

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any nonzero value. The loop

iterates while the condition is true. When the condition becomes false, the

program control passes to the line immediately following the loop.

Figure 10: - While Loop Flowchart

Here, the key point to note is that a while loop might not execute at all.

When the condition is tested and the result is false, the loop body will be

skipped and the first statement after the while loop will be executed.

 All variables used in the test expression of the while statement must be

initialized at some point before the while loop is reached. In addition, the body

of the loop must do something to change the value of the variable used in the

expression being tested. Otherwise the condition would remain true and the

loop would never terminate. This situation, known as an infinite loop, is

illustrated next.

The following program illustrates the while…loop

 #include<stdio.h>

 #include<conio.h>

 void main() {

 int sum, n;

 sum=0; n=1;

 clrscr();

 while(n<=10)

 {

 sum=sum+n*n;

 n=n+1;

 }

 printf(“sum=%d”,sum);

 getch(); }

5.10. THE DO…WHILE LOOP

 The do… while loop differs from its counterpart, the while loop in that

it makes what is called a loop post-test. That is the condition is not tested until

the body of the loop has been executed once. In the while loop, by contrast, the

51

 Self-instructional Material

Control Statements

and Decision Making

 NOTES

test is made on entry to the loop rather than at the end. The effect is that even if

the condition is false when the do-while loop is first encountered, the body of

the loop is executed at least once. If the condition is false after the first

iteration, the loop terminates. If the first iteration has made the condition true,

however the loop continues.

The general form of the do….while loop is as follows:
do {

 statement(s);

} while(condition);

The fact that the while clause is located after the statement reflects the

fact that the test is made after the statement is executed. If the body of the loop

is a single statement, it must be terminated with a semicolon. For example:

do {

a=a+10; }

while (a < b);

This semicolon marks the end of the inner statement only not of the

entire loop construct. In every situation that requires a loop, either one of these

two loops can be used.

Figure 11: - The do…while loop flowchart

The following program illustrates the do…while statement.

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int sum,i;

 i=1;

 sum=0;

 clrscr();

 do

 {

 sum=sum + 2;

 i=i+2;

 }

 while(sum<40 || i<10);

 printf(“The value of sum is = %d”,sum);

 getch();

 }

52

Control Statements and

Decision Making

NOTES

Self-instructional Material

5.11. THE FOR LOOP

 The for statement is the most commonly used looping statement in 'C'.

This statement includes an expression that specifies an initial value for an

index, another expression that determines whether or not the loop is continued

and the third expression that allows the index to be modified at the end of each

pass.

The general form of the for statement is

for (init; condition; increment) {

 statement(s);

}

Here is the flow of control in a 'for' loop −

 The init step is executed first, and only once. This step allows you to

declare and initialize any loop control variables. You are not required to put a

statement here, as long as a semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is

executed. If it is false, the body of the loop does not execute and the flow of

control jumps to the next statement just after the 'for' loop.

 After the body of the 'for' loop executes, the flow of control jumps back

up to the increment statement. This statement allows you to update any loop

control variables. This statement can be left blank, as long as a semicolon

appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and

the process repeats itself (body of loop, then increment step, and then again

condition). After the condition becomes false, the 'for' loop terminates.

Figure 12: - The For Loop Flowchart

Let us understand the concept of for loop with the help of an example:

 #include <stdio.h>

 #include<conio.h>

 void main()

 {

 int sum,i;

53

 Self-instructional Material

Control Statements

and Decision Making

 NOTES

 sum=0; i=1;

 for(i=1; i<=10; i++)

 {

 sum=sum+i*I;

 }

 printf(“The sum value is = %d”, sum);

 getch();

 }

5.12. THE NESTING OF FOR LOOP

\Loops can be nested or embedded one within another. The inner and outer

loops need not be generated by the same type of control structure. It is essential;

however that one loop be completely embedded within the other there can be no

overlap. Each loop must be controlled by a different index.

The syntax for a nested for loop statement in C is as follows –
for (init; condition; increment) {

 for (init; condition; increment) {

 statement(s);

 }

 statement(s);

}

The following program uses a nested for loop to find the prime numbers from 2

to 100 –
#include <stdio.h>

 int main () {

 int i, j;

 for(i = 2; i<100; i++) {

 for(j = 2; j <= (i/j); j++)

 if(!(i%j)) break; // if factor found, not prime

 if(j > (i/j)) printf("%d is prime\n", i);

 }

 return 0;}

5.13. THE BREAK AND CONTINUE STATEMENT

The Break Statement

 The break statement is used to force fully terminate loops or to exit from

a switch. It can be used within a while, a do-while, for or a switch statement.

The format is simple as

break;

Without any embedded expression or statements. The break statement

causes a transfer of control out of the entire switch statement, to the first

statement following the switch statement.

If a break statement is included in a while, in do while or in for loop,

then control will immediately be transferred out of the loop when the break

54

Control Statements and

Decision Making

NOTES

Self-instructional Material

statement is encountered. Thus provides a convenient way to terminate the loop

if an error or other irregular condition is detected.

The Continue Statement

 The continue statement is used to bypass the remainder of the current

pass through a loop. The loop does not terminate when a continue statement is

encountered, instead the remaining loop statements are skipped and the

computation proceeds directly to the next pass through the loop. It can also be

included within a while, do while or a for statement as like break statement. It is

also written simply as

continue;

without any embedded statement or expression.

5.14. LET US SUM UP

 In this unit, you have learnt about the decision making statements of C

language; looping statements and other statements supported for decision

making and looping statements. This knowledge would make you understand

the various decision making statements like simple if, if…else and nested

if…else etc. and looping statements like while, do…while and for statements

and break and continue statements also. Thus, the control statements and

decision making unit would have brought you to closer to know the concept and

usage of decision making and control statements too.

5.15. UNIT – END QUESTIONS

1. List out the decision making statements of C language with example.

2. Identify the use of loop control statements with example.

3. What is the use of break and continue statement?

5.16. ANSWER TO CHECK YOUR PROGRESS

1. Decision making is an important part of programming. Every programming

language supports decision making statements allowing programmers to branch

according to the condition. In C programming language, if statement is used to

check condition and make decision. The decisions or statements are enclosed

inside curly braces, however if only a single statement has to be executed, curly

braces are not mandatory. Depending upon the number of conditions to be

checked, we have following types of if statement:

1. if statement. 2. if ... else statement. 3. Nested if. 4.

Switch statement.

2. In general, statements are executed sequentially: The first statement in a

function is executed first, followed by the second, and so on. Programming

languages provide various control structures that allow for more complicated

execution paths. A loop statement allows us to execute a statement or group of

statements multiple times. Given below is the general form of a loop statement

in most of the programming languages –

1. while loop. 2. do…while loop 3. for loop.

https://www.programtopia.net/c-programming/docs/if-statements#if-statement
https://www.programtopia.net/c-programming/docs/if-statements#if-else-statement
https://www.programtopia.net/c-programming/docs/if-statements#nested-if

55

 Self-instructional Material

Control Statements

and Decision Making

 NOTES

3. The break statement is used to force fully terminate loops or to exit from a

switch. It can be used within a while, a do-while, for or a switch statement.

The continue statement is used to bypass the remainder of the current pass

through a loop. The loop does not terminate when a continue statement is

encountered, instead the remaining loop statements are skipped and the

computation proceeds directly to the next pass through the loop.

5.17. SUGGESTED READINGS

1. “Programming in C”, Stephen G. Kochan, Addison-Wesley Professional,

Fourth Edition, 2014.

2. “The C Programming Language”, Brain W. Kernighan / Dennis Ritchie,

Pearson Publications, 2015.

3. “Programming with ANSI and Turbo C”, Ashok Kamthane, Pearson

Education India, 2006.

56

Arrays and Strings

NOTES

Self-instructional Material

UNIT VI – ARRAYS AND STRINGS

Structure

6.1. Introduction

6.2. Objective

6.3. Arrays

6.3.1. One Dimensional Array

6.3.2. Passing Arrays to Functions

6.3.3. Multidimensional Arrays

6.4. Strings

6.5. Let Us Sum Up

6.6. Unit – End Exercises

6.7. Answer to Check Your Progress

6.8. Suggested Readings

6.1. INTRODUCTION

 As we stated earlier that the variables are the entities in ‘C’

which are used to hold data in memory. But the concept of variables

does not solve the indeterminate number of values is to be stored and

operated upon. In case of storing say 100 values; it is a very difficult

task to store 100 different variable names with their values. Arrays are

the solution to this problem. Arrays are nothing but a single name to a

whole group of similar data. The position in terms of arrays is known

as subscript. Each subscript must be expressed as a non-negative

integer.

6.2. OBJECTIVES

After going through this lesson you will be able in a position to

 Define AN ARRAY

 Process AN ARRAY

 Pass ARRAYS TO FUNCTIONS

 Process MULTIDEMNSIONAL ARRAYS AND STRINGS.

6.3. ARRAYS

 As we stated earlier that the variables are the entities in ‘C’

which are used to hold data in memory. But the concept of variables

does not solve the indeterminate number of values is to be stored and

operated upon. In case of storing say 100 values; it is a very difficult

task to store 100 different variable names with their values. Arrays are

the solution to this problem. Arrays are nothing but a single name to a

whole group of similar data. The position in terms of arrays is known

as subscript. Each subscript must be expressed as a non-negative

integer.

57

Arrays and Strings

NOTES

Self-instructional Material

 Arrays a kind of data structure that can store a fixed-size

sequential collection of elements of the same type. An array is used to

store a collection of data, but it is often more useful to think of an array

as a collection of variables of the same type.

Instead of declaring individual variables, such as number0,

number1, ..., and number99, you declare one array variable such as

numbers and use numbers[0], numbers[1], and ..., numbers[99] to

represent individual variables. A specific element in an array is

accessed by an index.

Figure 13: - The Array representation

All arrays consist of contiguous memory locations. The lowest

address corresponds to the first element and the highest address to the

last element. Array can be classified into following types

 One Dimensional Array

 Two Dimensional Array

 Multi-Dimensional Array

6.3.1. One Dimensional Array

 Arrays are defined in much the same manner as ordinary

variables except that each array name must be followed by a size

specification. For a one-dimensional array, the size is specified by a

positive integer expression enclosed in square brackets.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the

elements and the number of elements required by an array as follows –

type arrayName [arraySize];

This is called a single-dimensional array. The arraySize must be an

integer constant greater than zero and type can be any valid C data

type. For example,

int a[10];

char text[100];

static char text[100];

The array’s size can be defined in terms of a symbolic constant rather

than a fixed integer quantity.

Automatic arrays, unlike automatic variables, cannot be

initialized. But the definitions of external and static arrays can include

the assignment of initial values if required. The initial values must

appear in the order in which they will be assigned to the individual

array elements, enclosed in braces and separated by commas. The

general form is

58

Arrays and Strings

NOTES

Self-instructional Material

storage class data-type array. name[expression]={value1,

value2 - - - , value n};

For example,

char school[4] ={‘O’,’P’,’E’,’N’};

int marks[10]={1,2,3,4,5,6,7,8,9,10};

static float y[3]={o,0.3,0.2};

All individual array elements that are not assigned explicit initial

values will automatically be set to zero. This includes the remaining

elements of an array in which certain element have been assigned non

zero values. The array size need not be specified explicitly when initial

values are included as a part of an array definition. With a numerical

array, the array size will automatically be set equal to the number of

initial values included within the definition.

For example

int array[]={4,8,3,7,5};

Since the square brackets following the array name are empty, the

compiler determines how many elements to allocate for the array by

counting the number. of values within the curly braces. This approach

can help to avoid errors. If the dimension is specified explicitly, and the

curly braces contain more initialization values than are needed, a

syntax error is flagged by the compiler. The case of strings is different.

The array size specification in this case is usually omitted. The proper

array size will be assigned automatically. This will include a provision

for the null character.

If a program requires a one-dimensional array declaration the

declaration is written in the same manner as the array definition with

the following exception. 1. The square brackets may be empty, since

the array size will have been specified as a part of the array definition.

Array declarations are customarily written in this form. 2. Initial values

cannot be included in the declaration. Following are the examples of

defining an External array.

Let us understand the concept of one-dimensional array using the

following example,

 #include<stdio.h>

 #include<conio.h>

 void main() {

 int i;

 float a[10], value, total;

 printf(“Enter 10 real numbers”);

 for(i=0;i<10;i++)

 {

 scanf(“%f”, &value);

 x[i] = value;

 }

 total = 0.0;

 for (i=0;i<10;i++)

 total=total + x[i] * x[i];

 printf(“\n”);

 for (i=0;i<10;i++)

 printf(“x[%2d] = %5.2f\n”, i+1, x[i]);

59

Arrays and Strings

NOTES

Self-instructional Material

 printf(“\n total = %.2f\n”, total);

 getch(); }

6.3.2. Passing Arrays to Functions

An array name can be used as an argument to a function, thus

permitting the entire array to be passed to the function.

To pass an array to a function, the array name must appear by

itself, without brackets or subscripts, as an actual argument or

parameter within the function call. The corresponding formal

parameter is written in the same manner, though it must be declared as

an array within the formal argument declarations. When declaring a

one-dimensional array as a formal argument, the array name is written

with a pair of empty square brackets. The size of the array is not

specified within the formal argument declaration.

When an array is passed to a function, however, the values of

the array element are not passed to the function. But the array name is

interpreted as the address of the first array element. This address is

assigned to the corresponding formal argument when the function is

called. The formal argument therefore becomes a pointer to the first

array element. Arguments passed in this manner are said to be passed

by reference rather than by value. When a reference is made to an array

element within the function, the value of the element’s subscript is

added to the value of the pointer to indicate the address of the specified

array element. Therefore, any array element can be accessed from

within the function. If an array element is altered within the function,

the alteration will be recognized in the calling portion of the program.

With the return statement array cannot be used. If the elements of an

array are to be passed back to the calling portion of the program, the

array must either be defined as an external array or it must be passed to

the function as a formal argument.

Way-1

Formal parameters as a pointer –

void myFunction(int *param) {

 .

 .

 .

}

Way-2

Formal parameters as a sized array −

void myFunction(int param[10]) {

 .

 .

 .

}

Way-3

Formal parameters as an unsized array –

void myFunction(int param[]) {

 .

 .

60

Arrays and Strings

NOTES

Self-instructional Material

 .

}

Example

Now, consider the following function, which takes an array as an

argument along with another argument and based on the passed

arguments, it returns the average of the numbers passed through the

array as follows –

double getAverage(int arr[], int size) {

 int i;

 double avg;

 double sum = 0;

 for (i = 0; i < size; ++i) {

 sum += arr[i];

 }

 avg = sum / size;

 return avg;

}

6.3.3. Multidimensional Arrays

 The arrays we have used so far have been one dimensional. The

elements of the array could be represented either as a single column or

as a single row. A two dimensional array is a grid containing rows and

columns, in which each element is uniquely specified by means of its

row and column coordinates. Multidimensional arrays are defined in

much the same manner as one dimensional array, except that a separate

pair of square brackets is required for each subscript. Thus a two

dimensional array will require two pairs of square brackets, a three

dimensional array will require three pairs of square brackets and so on.

A multidimensional array definition can be written as

storage-class data-type array-name[expression1][expression

2] — —[expression n];

The two dimensional array is like a matrix where position of

each element is specified by both the column and row numbers.

 The row subscript generally is specified before the column

subscript. In C, each subscript be written within its own separate pair of

brackets.

 For example: Definition of Multidimensional arrays are given

below.

float table[10][10];

char string[10]20];

If a multidimensional array definition includes the assignment

of initial values, then care must be given to the order in which the

initial values are assigned to the array element. The rule is that the last

subscript increases most rapidly, and the first subscript increases least

61

Arrays and Strings

NOTES

Self-instructional Material

rapidly. Thus, the elements of a two dimensional array will be assigned

by rows, that is, the elements of the first row will be assigned, then the

elements of the second row, and so on.

Suppose int sample [3][4]={1,2,3,4,5,6,7,8,9,10,11,12}

Thus sample [0][0]=1 sample[0][1]=2 sample [0][2]=3 sample

[0][3]=4 sample[1][0]=5 sample[1][1]=6 sample[1][2]=7

sample[1][3]=8 sample[2][0]=9 sample[2][1]=10 sample[2][2]=11

sample[2] [3]=12

 Multidimensional arrays are processed in the same manner as

one dimensional array, on an element-by-element basis.

Let us understand the concept of multi-dimensional array using the

following example

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int a[10][10], b[10][10],i,j,n=3;

 clrscr();

 printf(“Enter the First array values”);

 for (i=0;i<n;i++)

 {

 for (j=0;j<n;j++)

 {

 scanf(“%d”,&a[i][j]);

 }

 }

 printf(“Enter the Second array values”);

 for (i=0;i<n;i++)

 {

 for (j=0;j<n;j++)

 {

 scanf(“%d”,&b[i][j]);

 }

 }

 printf(“Displaying Array Values”);

 for (i=0;i<n;i++)

 {

 for (j=0;j<n;j++)

 {

 scanf(“%d”,a[i][j]);

 }

 }

 for (i=0;i<n;i++)

 {

 for (j=0;j<n;j++)

 {

 scanf(“%d”,b[i][j]);

 }

 }

 getch();

62

Arrays and Strings

NOTES

Self-instructional Material

 }

6.4. STRINGS

 Strings are actually one-dimensional array of characters

terminated by a null character '\0'. Thus a null-terminated string

contains the characters that comprise the string followed by a null.

The following declaration and initialization create a string

consisting of the word "Hello". To hold the null character at the end of

the array, the size of the character array containing the string is one

more than the number of characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization then you can write

the above statement as follows −

char greeting[] = "Hello";

 Following is the memory presentation of the above defined

string in C− the C compiler automatically places the '\0' at the end of

the string when it initializes the array. Let us try to print the above

mentioned string –

Figure 14: - Strings Memory Representation

#include <stdio.h>

int main () {

 char greeting[6] = {'H', 'e', 'l', 'l', 'o',

'\0'};

 printf("Greeting message: %s\n", greeting);

 return 0;

}

When the above code is compiled and executed, it produces the

following result −

Greeting message: Hello

C supports a wide range of functions that manipulate null-terminated

strings –

Sr.

No.

Function & Purpose

63

Arrays and Strings

NOTES

Self-instructional Material

1. strcpy(s1, s2); - Copies string s2 into string s1.

2.
strcat(s1, s2); - Concatenates string s2 onto the end of

string s1.

3. strlen(s1); - Returns the length of string s1.

4.
strcmp(s1, s2); - Returns 0 if s1 and s2 are the same; less

than 0 if s1<s2; greater than 0 if s1>s2.

5.
strchr(s1, ch); - Returns a pointer to the first occurrence of

character ch in string s1.

6.
strstr(s1, s2); - Returns a pointer to the first occurrence of

string s2 in string s1.

Table 11: - String Functions

 Similarly, strcmp() function compares two strings to find out

whether they are same or different. The two strings are compared

character by character until there is a mismatch or end of one of the

strings is reached, whichever occurs first. If the two strings are

identical, strcmp() returns a value zero. If they are not, it returns the

numeric difference between the ASCII values of the non-matching

character.

 It will print the same string as entered from the user. The length

of string should not exceed the dimension of the character array. This is

because the C compiler doesn’t perform bounds checking on character

arrays. scanf() is not capable of receiving multi word strings. The way

to get around this limitation is by using the function gets().

Let us understand the concept of string functions using the following

example.

1. strcat() function

#include <stdio.h>

#include <string.h>

 int main()

{

char source[] = " fresh2refresh" ;

char target[]= " C tutorial" ;

 printf ("\nSource string = %s", source) ;

 printf ("\nTarget string = %s", target) ;

 strcat (target, source) ;

 printf ("\nTarget string after strcat() = %s", target) ;

}

2. strcpy() function

#include <stdio.h>

#include <string.h>

 int main()

{

char source[] = "fresh2refresh" ;

 char target[20]= "" ;

64

Arrays and Strings

NOTES

Self-instructional Material

 printf ("\nsource string = %s", source) ;

 printf ("\ntarget string = %s", target) ;

 strcpy (target, source) ;

 printf ("\ntarget string after strcpy() = %s", target) ;

return 0;

}

3. strlen() function

#include <stdio.h>

#include <string.h>

 int main()

{

 int len;

 char array[20]="fresh2refresh.com" ;

 len = strlen(array) ;

 printf ("\string length = %d \n" , len) ;

 return 0; }

4. strcmp() function

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[] = "fresh" ;

 char str2[] = "refresh" ;

 int i, j, k ;

 i = strcmp (str1, "fresh") ;

 j = strcmp (str1, str2) ;

 k = strcmp (str1, "f") ;

 printf ("\n%d %d %d", i, j, k) ;

 return 0;

 }

6.5. LET US SUM UP

 In this unit, you have learnt about the arrays and strings of C

language. This knowledge would make you understand the arrays,

different types of arrays, arrays vs variables and string and string

functions. Thus, the arrays and strings unit would have brought you to

closer to know the concept and usage of arrays and strings supported

by C.

6.6. UNIT – END QUESTIONS

1. Define Array? Explain about the types of array with example.

2. Examine the use of strings and its various functions with example.

6.7. ANSWER TO CHECK YOUR PROGRESS

1. Array is a kind of data structure that can store a fixed-size sequential

collection of elements of the same type. An array is used to store a

65

Arrays and Strings

NOTES

Self-instructional Material

collection of data, but it is often more useful to think of an array as a

collection of variables of the same type.

All arrays consist of contiguous memory locations. The lowest

address corresponds to the first element and the highest address to the

last element. Array can be classified into following types

a. One Dimensional Array

b. Two Dimensional Array

c. Multi-Dimensional Array

2. Strings are actually one-dimensional array of characters terminated by

a null character '\0'. Thus a null-terminated string contains the

characters that comprise the string followed by a null. The following

declaration and initialization create a string consisting of the word

"Hello". To hold the null character at the end of the array, the size of

the character array containing the string is one more than the number of

characters in the word "Hello."

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization then you can write the

above statement as follows −

 char greeting[] = "Hello";

Following is the memory presentation of the above defined string in C−

the C compiler automatically places the '\0' at the end of the string

when it initializes the array. Let us try to print the above mentioned

string –

1. strcpy. 2.strcat. 3. strlen. 4. strcmp. 5.

strstr 6. strchr

6.8. SUGGESTED READINGS

1. “C Primer Plus”, Stephen Prata, Addison-Wesley Professional, Sixth

Edition, 2013.

2. “Sams Teach Yourself C Programming in One Hour a Day”, Bradley

L. Jones, Sams Publishing, Seventh Edition, 2013.

3. “C-How to Program”, Paul Deitel & Harvey Deitel, Prentice-Hall

Publications, Seventh Edition, 2013.

66

Pointers - I

NOTES

Self-instructional Material

UNIT VII – POINTERS - I

Structure

7.1. Introduction

7.2. Objective

7.3. Basics of Pointers

7.4. Pointers and One-dimensional Arrays

7.5. Pointer Arithmetic

7.6. Pointer Subtraction and Comparison

7.7. Similarities between Pointers and One-dimensional Arrays

7.8. Let Us Sum Up

7.9. Unit – End Exercises

7.10. Answer to Check Your Progress

7.11. Suggested Readings

7.1. INTRODUCTION

As you know by now, variables are stored in memory. Each memory

location has a numeric address, in much the same way that each element of

an array has its own subscript. Variable names in C and other high-level

languages enable the programmer to refer to memory locations by name, but

the compiler must translate these names into addresses. A pointer is a

variable that represents the location of a data item, such as a variable or an

array element.

7.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain address operator.

 Define pointer declarations describe pointers and one-dimensional arrays.

 Define pointers and multidimensional arrays.

 Explain arrays of pointers.

7.3. BASICS OF POINTERS

 Variables are stored in memory. Each memory location has a numeric

address, in much the same way that each element of an array has its own

subscript. Variable names in C and other high-level languages enable the

programmer to refer to memory locations by name, but the compiler must

translate these names into addresses. A pointer is a variable that represents

the location of a data item, such as a variable or an array element. Pointers

are used frequently in C. Pointers can be used to pass information back and

forth between a function and its reference point.

67

Pointers - I

NOTES

Self-instructional Material

The Address Operator

 Within a computer’s memory, every stored data item occupies one or

more contiguous memory cells. The number of memory cells required to

store a data item depends on the type of data item. For example, a single

character will typically be stored in 1 byte of memory; an integer requires

two contiguous bytes. A floating point number may require four contiguous

bytes, and a double precision quantity may require eight contiguous bytes.

Suppose 'a' is a variable that represents some particular data item. The

compiler will automatically assign memory cells for this data item. The data

item can be accessed if we know the location of the first memory cell. The

address of a’s memory location can be determined by the expression &v,

where & is a unary operator called the address operator, that evaluates the

address of its operand. Now let us assign the address of 'a' to another

variable,

Thus

pa= &a;

This new variable is called a pointer to 'a', since it “points” to the locations

where 'a' is stored in memory. However, pa represents a’s address, not its

value. Thus, pa is referred to as a pointer variable.

Address of a → value of a

pa a

The data item represented by 'a' (i.e. the data item stored in a’s memory

cells) can be accessed by the expression *pa, where * is a unary operator,

called the indirection operator, that operates only on a pointer variable.

Therefore, *pa and 'a' both represent the same data item (ie the contents of

the same memory cells). Further more if we write pa= &a and b = *pa, then

'a' and 'b' will both represents the same value i.e the value of a will indirectly

be assigned to 'b

 The unary operators & and * are members of the same precedence

group as the other unary operators i.e. -, ++, —, ! , size of and(type). The

address operator (&) must act upon operands associated with unique

addresses, such as ordinary variables or single array elements.

The Pointer Declaration

 Pointer variables, like all other variables, must be declared before

they may be used in a C program. The interpretation of a pointer declaration

is somewhat different than the interpretation of other variable declarations.

When a pointer variable is declared, the variable name must be preceded by

an asterisk (*). This identifies the fact that the variable is a pointer. The data

type that appears in the declaration refers to the object of the pointer, i.e the

data item that is stored in the address represented by the pointer, rather than

the pointer itself.

 Thus, a pointer declaration may be written in general terms as

datatype *ptr;

 Where ptr is the name of the pointer variable and data-type refers to

the data type of the pointer’s object.

For example,

 float a,b;

 float *pb;

68

Pointers - I

NOTES

Self-instructional Material

 The first line declares a and b to be floating-point variables. The

second line declares pb to be a pointer variable whose object is a floating-

point quantity i.e. 'pb' point to a floating point quantity. 'pb' represents an

address, not a floating-point quantity.

 Within a variable declaration, a pointer variable can be initialized by

assigning it the address of another variable.

The Pointers as Arguments

 Pointers are often passed to a function as arguments. This allows data

items within the calling portion of the program to be accessed by the

function, altered within the function, and then returned to the calling portion

of the program in altered form.

 When an argument is passed by value, the data item is copied to the

function. Thus any alteration made to the data item within the function is not

carried over into the calling routine when an argument is passed by

reference; however the address of a data item is passed to the function. The

contents of that address can be accessed freely, either within the function or

within the calling routine. Moreover, any change that is made to the data

item will be recognized in both the function and the calling routine. Thus, the

use of a pointer as a function argument permits the corresponding data item

to be altered globally from within the function.

 If formal arguments are pointers, then each must be preceded by an

asterisk. Also, if a function declaration is included in the calling portion of

the program, the data type of each argument that corresponds to a pointer

must be followed by an asterisk.

#include main ()

{

int i,j;

i=2;

j=5;

printf(“i=%d and j=%d\n”, i,j);

swap(&i,&j);

printf(“\nnow i=%d and j=%d\n”, i,j);

}

swap(i,j)

int *i,*j;

{

int temp=*i;

*i=*j;

*j=temp;

}

 If the formal parameters i and j of the swap function were declared

merely as integers, and the main function passed only i and j rather than their

addresses, the exchange made in swap would have no effect on the variables

i and j in main. The variable temp in swap function is of type int, not int*.

The values being exchanged are not the pointers, but the integers being

pointed to by them. Also temp is initialized immediately upon declaration to

the value pointed to by i.

69

Pointers - I

NOTES

Self-instructional Material

7.4. POINTERS AND ONE-DIMENSIONAL ARRAYS

 Array name is really a pointer to the first element in that array.

Therefore, if x is a one-dimensional array, then the address of the first array

element can be expressed as either &x[0] or x. Similarly, the address of the

second array element can be written as either & x [1] or as (x+1) and so on.

Here we should keep it in mind that the expression (x+1) is a symbolic

representation for an address specification rather than an arithmetic

expression. When writing the address of an array element in the form(x+i),

there is no need to concern with the number of memory cells associated with

each type of array element, the C compiler adjusts for this automatically. The

programmer must specify only the address of the first array element and the

number of array elements beyond the first. Since &x[i] and (x+i) both

represent the address of the ith element of x then x [i] and *(x+i) both

represent the contents of that address. The two terms are interchangeable.

When assigning a value to an array element such as x[i] the left side

of the assignment statement may be written as either x[i]or *(x+i).

Thus a value may be assigned directly to an array element, or it may

be assigned to the memory area whose address is that of the array element.

Thus expression such as x,(x+i) and &x [i] cannot appear on the left side of

an assignment statement. Numerical array elements cannot be assigned initial

values if the array is defined as a pointer variable. Therefore a conventional

array definition is required if initial values will be assigned to the elements

of a numerical array. Let us assume that x is to be defined as a one-

dimensional, 10 element array of integers. It is possible to define x as a

pointer variable rather than as an array. Thus we can write int *x; instead of

int x[10]; However x is not automatically assigned a memory block when it

is defined as a pointer variable, To assign sufficient memory for x ,we can

make use of the library function malloc as follows :

x= malloc (10*size of (int));

This function reserves a block of memory whose size is equivalent to

the size of an integer quantity. The function returns a pointer to a character.

If the declaration is to include the assignment of initial values, then x must

be defined as an array rather then as a pointer variable for example

int x[10]= {1,2,3,4,5,6,7,8,9,10};

or int x[]= {1,2,3,4,5,6,7,8,9,10};

For character arrays you can write them in the form of pointer as

char*x="this is string";

7.5. POINTER ARITHMETIC

 We can perform arithmetic operations on the pointers like addition,

subtraction, etc. However, as we know that pointer contains the address, the

result of an arithmetic operation performed on the pointer will also be a

pointer if the other operand is of type integer. In pointer-from-pointer

subtraction, the result will be an integer value. Following arithmetic

operations are possible on the pointer in C language:

 Increment

 Decrement

70

Pointers - I

NOTES

Self-instructional Material

 Addition

 Subtraction

 Comparison

7.4.1. Pointer Subtraction and Comparison

 An integer value can be added to or subtracted from a pointer

variable. For example, px is a pointer variable representing the address of

some variable x. We can write expressions such as a ++ px ,- - px (px +3),(

px+i) and (px – i) where i is an integer variable. Each expression will

represent an address located some distance from the original address

represented by px. The exact distance will be the product of the integer

quantity and the number. of bytes or words associated with the data item to

which px points. One pointer variable can be subtracted from another

provided both variables points to elements of the same array. The resulting

value indicates the number of words or bytes separating the corresponding

array elements.

 Pointer variables can be compared provided both variables point to

objects of the same data type. Such comparisons can be useful when both

pointer variables point to elements of the same array. The following points

must be kept in mind about operations on pointers:-

 A pointer variable can be assigned the address of an ordinary

variable.

 A pointer variable can be assigned the value of another pointer

variable provided both pointers point to objects of the same data type.

 An integer quantity can be added to or subtracted from a pointer

variable.

 A pointer variable can be assigned a null (zero) value.

 One pointer variable can be subtracted from another provided both

pointers point to elements of the same array.

 Two pointer variables can be compared provided both pointers point

to objects of the same data type.

Pointers may be compared by using relational operators, such as ==, <, and

>. If p1 and p2 point to variables that are related to each other, such as

elements of the same array, then p1 and p2 can be meaningfully compared.

7.6. POINTER SUBTRACTION AND COMPARISON

 As we've seen, you can add an integer to a pointer to get a new

pointer, pointing somewhere beyond the original (as long as it's in the same

array). For example, you might write

 ip2 = ip1 + 3;

Applying a little algebra, you might wonder whether

 ip2 - ip1 = 3

and the answer is, yes. When you subtract two pointers, as long as

they point into the same array, the result is the number of elements

separating them. You can also ask (again, as long as they point into the same

array) whether one pointer is greater or less than another: one pointer is

``greater than'' another if it points beyond where the other one points. You

can also compare pointers for equality and inequality: two pointers are equal

if they point to the same variable or to the same cell in an array, and are

71

Pointers - I

NOTES

Self-instructional Material

(obviously) unequal if they don't. (When testing for equality or inequality,

the two pointers do not have to point into the same array.)

One common use of pointer comparisons is when copying arrays

using pointers. Here is a code fragment which copies 10 elements

from array1 to array2, using pointers. It uses an end pointer, ep, to keep track

of when it should stop copying.

 int array1[10], array2[10];

 int *ip1, *ip2 = &array2[0];

 int *ep = &array1[10];

 for(ip1 = &array1[0]; ip1 < ep; ip1++)

 *ip2++ = *ip1;

 As we mentioned, there is no element array1[10], but it is legal to

compute a pointer to this (nonexistent) element, as long as we only use it in

pointer comparisons like this (that is, as long as we never try to fetch or store

the value that it points to.)

7.7. SIMILARITIES BETWEEN POINTERS & ONE-

DIMENSIONAL ARRAYS

 There are a number of similarities between arrays and pointers in C.

If you have an array

 int a[10];

you can refer to a[0], a[1], a[2], etc., or to a[i] where i is an int. If you declare

a pointer variable ip and set it to point to the beginning of an array:

 int *ip = &a[0];

you can refer to *ip, *(ip+1), *(ip+2), etc., or to *(ip+i) where i is an int.

There are also differences, of course. You cannot assign two arrays; the code

 int a[10], b[10];

 a = b; /* WRONG */

is illegal. As we've seen, though, you can assign two pointer variables:

 int *ip1, *ip2;

 ip1 = &a[0];

 ip2 = ip1;

Pointer assignment is straightforward; the pointer on the left is simply made

to point wherever the pointer on the right does. We haven't copied the data

pointed to (there's still just one copy, in the same place); we've just made two

pointers point to that one place.

The similarities between arrays and pointers end up being quite useful, and

in fact C builds on the similarities, leading to what is called ``the equivalence

of arrays and pointers in C.'' When we speak of this ``equivalence'' we do not

mean that arrays and pointers are the same thing (they are in fact quite

different), but rather that they can be used in related ways, and that certain

operations may be used between them.

The first such operation is that it is possible to (apparently) assign an array to

a pointer:

 int a[10];

 int *ip;

 ip = a;

What can this mean? In that last assignment ip = a, aren't we mixing apples

and oranges again? It turns out that we are not; C defines the result of this

72

Pointers - I

NOTES

Self-instructional Material

assignment to be that ip receives a pointer to the first element of a. In other

words, it is as if you had written

 ip = &a[0];

The second facet of the equivalence is that you can use the ``array

subscripting'' notation [i] on pointers, too. If you write

 ip[3]

it is just as if you had written

 *(ip + 3)

So when you have a pointer that points to a block of memory, such as an

array or a part of an array, you can treat that pointer ``as if'' it were an array,

using the convenient [i] notation. In other words, at the beginning of this

section when we talked about *ip, *(ip+1), *(ip+2), and *(ip+i), we could

have written ip[0], ip[1], ip[2], and ip[i]. As we'll see, this can be quite useful

(or at least convenient).

The third facet of the equivalence (which is actually a more general version

of the first one we mentioned) is that whenever you mention the name of an

array in a context where the ``value'' of the array would be needed, C

automatically generates a pointer to the first element of the array, as if you

had written &array[0]. When you write something like

 int a[10];

 int *ip;

 ip = a + 3;

it is as if you had written

 ip = &a[0] + 3;

which (and you might like to convince yourself of this) gives the same result

as if you had written

 ip = &a[3];

For example, if the character array

 char string[100];

contains some string, here is another way to find its length:

 int len;

 char *p;

 for(p = string; *p != '\0'; p++)

 ;

 len = p - string;

After the loop, p points to the '\0' terminating the string. The expression p -

string is equivalent to p - &string[0], and gives the length of the string. (Of

course, we could also call strlen; in fact here we've essentially written

another implementation of strlen.)

7.8. LET US SUM UP

 In this unit, you have learnt about the pointers, pointers with array

and pointers arithmetic of C language. This knowledge would make you

understand the basics of pointers; the concept of array is implemented in

pointer and arithmetic operations of pointers. Thus, the pointers unit would

73

Pointers - I

NOTES

Self-instructional Material

have brought you to closer to know the concept of pointers and array of

pointers.

7.9. UNIT – END QUESTIONS

1. Discuss about the basic concepts of pointer with example.

2. Examine the operation of pointer arithmetic with example.

7.10. ANSWER TO CHECK YOUR PROGRESS

1. Variables are stored in memory. Each memory location has a numeric

address, in much the same way that each element of an array has its own

subscript. Variable names in C and other high-level languages enable the

programmer to refer to memory locations by name, but the compiler must

translate these names into addresses. A pointer is a variable that represents

the location of a data item, such as a variable or an array element. Pointers

are used frequently in C. Pointers can be used to pass information back and

forth between a function and its reference point.

2. We can perform arithmetic operations on the pointers like addition,

subtraction, etc. However, as we know that pointer contains the address, the

result of an arithmetic operation performed on the pointer will also be a

pointer if the other operand is of type integer. In pointer-from-pointer

subtraction, the result will be an integer value. Following arithmetic

operations are possible on the pointer in C language:

1. Increment. 2. Decrement. 3. Addition. 4.

Subtraction. 5. Comparison.

7.11. SUGGESTED READINGS

1. “C Programming Absolute Beginners Guide”, Greg Perry & Dean Miller,

Que Publishing, Third Edition, 2013.

2. “Programming in C”, Stephen G. Kochan, Addison-Wesley Professional,

Fourth Edition, 2014.

3. “Programming in ANSI C”, E. Balagurusamy, McGraw Hill Publications,

Eighth Edition, 2019.

4. “Let Us C”, Yashavant Kanetkar, BPB Publications, Sixteenth Edition,

2017.

5. “Head First C: A Brain-Friendly Guide”, David Griffiths & Dawn Griffiths,

O’Reilly Publications, 2012.

74

Pointers - II

NOTES

Self-instructional Material

UNIT VIII – POINTERS - II

Structure

8.1. Introduction

8.2. Objective

8.3. Null Pointers

8.4. Pointers and Strings

8.5. Pointers and two-dimensional arrays

8.6. Arrays of Pointers

8.7. Let Us Sum Up

8.8. Unit – End Exercises

8.9. Answer to Check Your Progress

8.10. Suggested Readings

8.1. INTRODUCTION

 Pointers are used frequently in C. Pointers can be used to pass

information back and forth between a function and its reference point. In

particular, pointers provide a way to return multiple data items from a

function via function arguments. Pointers also permit references to other

functions to be specified as arguments to a given function. This has the effect

of passing functions as arguments to the given function.

8.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain Null Pointer.

 Define pointers and Strings.

 Define pointers and Two-dimensional arrays.

 Explain arrays of pointers.

8.3. NULL POINTERS

 It is always a good practice to assign a NULL value to a pointer

variable in case you do not have an exact address to be assigned. This is done

at the time of variable declaration. A pointer that is assigned NULL is called

a null pointer.

The NULL pointer is a constant with a value of zero defined in several

standard libraries. Consider the following program −

#include <stdio.h>

int main () {

 int *ptr = NULL;

 printf("The value of ptr is : %x\n", ptr);

75

 Self-instructional Material

Pointers - II

NOTES

 return 0;

}

When the above code is compiled and executed, it produces the

following result − The value of ptr is 0

In most of the operating systems, programs are not permitted to

access memory at address 0 because that memory is reserved by the

operating system. However, the memory address 0 has special significance;

it signals that the pointer is not intended to point to an accessible memory

location. But by convention, if a pointer contains the null (zero) value, it is

assumed to point to nothing.

NULL Pointer is a pointer which is pointing to nothing. NULL

pointer points the base address of segment. In case, if you don’t have address

to be assigned to pointer then you can simply use NULL. Pointer which is

initialized with NULL value is considered as NULL pointer.

NULL is macro constant defined in following header files –

 stdio.h

 alloc.h

 mem.h

 stddef.h

 stdlib.h

8.4. POINTER AND STRINGS

A String is a sequence of characters stored in an array. A string

always ends with null ('\0') character. Simply a group of characters forms a

string and a group of strings form a sentence.

Creating a pointer for the string

The variable name of the string str holds the address of the first

element of the array i.e., it points at the starting memory address.

So, we can create a character pointer ptr and store the address of the

string str variable in it. This way, ptr will point at the string str. In the

following code we are assigning the address of the string str to the

pointer ptr.

char *ptr = str;

We can represent the character pointer variable ptr as follows.

Figure 15: - Character Pointer

A pointer to array of characters or string can be looks like the following:

76

Pointers - II

NOTES

Self-instructional Material

 #include <stdio.h>

 int main() {

 char *cities[] = {"Iran", "Iraq"};

 int i;

 for(i = 0; i < 2; i++)

 printf("%s\n", cities[i]);

 return 0; }

In the above pointer to string program, we declared a pointer array of

character datatypes and then few strings like "Iran", "Iraq" where initialized

to the pointer array (*cities[]). Note that we have not declared the size of the

array as it is of character pointer type. Coming to the explanation, cities[] is

an array which has its own address and it holds the address of first element (I

(Iran)) in it as a value. This address is then executed by the pointer, i.e)

pointer start reading the value from the address stored in the array cities[0]

and ends with '\0' by default. Next cities[1] holds the address of (I (Iraq).This

address is then executed by the pointer, i.e) pointer start reading the value

from the address stored in the array cities[1] and ends with '\0' by default. As

a result Iran and Iraq is outputted.

8.5. POINTER AND TWO DIMENSIONAL ARRAYS

 A two dimensional array, is actually a collection of one dimensional

arrays. Therefore, we can define a two dimensional array as a pointer to a

group of contiguous one-dimensional arrays. A two dimensional array

declaration can be written as

data type (*ptr) [expression2];

Notice the parentheses that surround the array name and the

preceding asterisk in the pointer version of each declaration. These

parentheses must be present. Without them we would be defining an array of

pointers rather than a pointer to a group of arrays, since these particulars

symbols (i.e. The square brackets and asterisk) would normally be evaluated

right-to-by.

For example, if x is a two dimensional integer array having 10 rows

and 20 columns, then we can declare x as

int(*x)[20];

rather than int x(10) (20);

Similarly, three dimensional integer array can be written as int (*x)

(20) (30)

An individual array element within a multi-dimensional array can be

accessed by repeatedly using the indirection operator. If n is a 2D array

having 10 rows and 20 columns, then item in row 2, column 5 can be

accessed by writing either

x[2][5]

or

((x+2)+5)

Here, (x+2) is a pointer to row 2. Therefore, the object of this pointer

*(x+2), refers to the entire row. Since row 2 is a one-dimensional array,

*(x+2) is actually a pointer to the first element in row 2. We now add 5 to

this pointer. Hence,(*(x+2)x5) is a pointer to element 5 in row 2. The object

77

 Self-instructional Material

Pointers - II

NOTES

of this pointer, (*(x+2)+5) therefore refers to the item in column 5 of row2

which is x[2][5].

8.6. ARRAYS OF POINTERS

 A multi-dimensional array can be expressed in terms of an array of

pointers rather than as a pointer to a group of contiguous arrays. In such

cases the newly defined array will have one less dimension than the original

multi-dimensional array. Each pointer will indicate the beginning of a

separate (n-1) dimensional array. In general terms, a 2D array can be defined

as a one dimensional array of pointers by writing.

data type *array [expression 1];

In this type of declaration, array name and its preceding asterisk are

not enclosed in parentheses. Thus, a right-to-left rule first associates the pairs

of square brackets with array, defining the named object as an array. The

preceding asterisk then establishes that the array will contain pointers.

For example x is a 2D integer array having 10 rows and 20 columns.

We can define x as a one-dimensional array of pointers by writing

int *x[10];

An individual array element, such as x[2][5], can be accessed by

writing *(x[2]+5).

In this expression, x[2] is a pointer to the first element in row 2, so

that (x[2] +5) points to element 5 within row 2. The object of this pointer,

*(x[2]+5), therefore refers to x[2][5].

Pointer arrays offer a particularly convenient method for storing

strings. In this situation, each array element is a character-type pointer that

indicates the beginning of a separate string. Each individual string can be

accessed by referring to its corresponding pointer.

An advantage to use arrays of pointers is that a fixed block of memory need

not be reserved in advance, as is done when initializing a conventional array.

If some of the strings are particularly long, there is no need to worry about

the possibility of exceeding some maximum specified string length. Arrays

of this type are often referred to as ragged arrays.

There may be a situation when we want to maintain an array, which

can store pointers to an int or char or any other data type available.

Following is the declaration of an array of pointers to an integer −

 int *ptr[MAX];

It declares ptr as an array of MAX integer pointers. Thus, each

element in ptr, holds a pointer to an int value. The following example uses

three integers, which are stored in an array of pointers, as follows –

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr[MAX];

 for (i = 0; i < MAX; i++) {

 ptr[i] = &var[i]; /* assign the address of integer. */

 }

 for (i = 0; i < MAX; i++) {

 printf("Value of var[%d] = %d\n", i, *ptr[i]);

78

Pointers - II

NOTES

Self-instructional Material

 }

 return 0;

}

An advantage to use arrays of pointers is that a fixed block of

memory need not be reserved in advance, as is done when initializing a

conventional array. If some of the strings are particularly long, there is no

need to worry about the possibility of exceeding some maximum specified

string length. Arrays of this type are often referred to as ragged arrays.

8.7. LET US SUM UP

 In this unit, you have learnt about the pointers with array and pointers

with strings supported by C language. This knowledge would make you

understand the concept of array is implemented in pointer and understand the

strings to be implemented in pointer too. Thus, the pointers unit would have

brought you to closer to know the concept of pointers with array and pointers

with strings.

8.8. UNIT – END QUESTIONS

1. Analyze the concept of pointers with array and explain with example.

2. Write about the pointers with strings using a simple example.

8.9. ANSWER TO CHECK YOUR PROGRESS

1. A multi-dimensional array can be expressed in terms of an array of pointers

rather than as a pointer to a group of contiguous arrays. In such cases the

newly defined array will have one less dimension than the original multi-

dimensional array. Each pointer will indicate the beginning of a separate (n-

1) dimensional array. In general terms, a 2D array can be defined as a one

dimensional array of pointers by writing. A two dimensional array, is

actually a collection of one dimensional arrays. Therefore, we can define a

two dimensional array as a pointer to a group of contiguous one-dimensional

arrays.

.

2. A String is a sequence of characters stored in an array. A string always ends

with null ('\0') character. Simply a group of characters forms a string and a

group of strings form a sentence. The variable name of the string str holds the
address of the first element of the array i.e., it points at the starting memory
address.

So, we can create a character pointer ptr and store the address of the string str

variable in it. This way, ptr will point at the string str. In the following code

we are assigning the address of the string str to the pointer ptr. char *ptr =

str;

8.10. SUGGESTED READINGS
1. “Sams Teach Yourself C Programming in One Hour a Day”, Bradley L.

Jones, Sams Publishing, Seventh Edition, 2013.

2. “C-How to Program”, Paul Deitel & Harvey Deitel, Prentice-Hall

Publications, Seventh Edition, 2013.

79

 Self-instructional Material

Pointers - II

NOTES

3. “Programming with ANSI and Turbo C”, Ashok Kamthane, Pearson

Education India, 2006

80

Structures and Unions

 NOTES

Self-instructional Material

BLOCK III: ARRAY CONCEPTS,

POINTERS & FUNCTION

UNIT IX – STRUCTURES AND UNIONS

Structure

9.1. Introduction

9.2. Objective

9.3. Structures

 9.3.1. Basics of Structures

 9.3.2. Arrays of Structures

 9.3.3. Pointers to Structures

 9.3.4. Self-referential Structures

9.4. Unions

9.5. Let Us Sum Up

9.6. Unit – End Exercises

9.7. Answer to Check Your Progress

9.8. Suggested Readings

9.1. INTRODUCTION

We studied earlier that array is a data structure whose element are all

of the same data type. Now we are going towards structure, which is a data

structure whose individual elements can differ in type. Thus a single

structure might contain integer elements, floating– point elements and

character elements. Pointers, arrays and other structures can also be included

as elements within a structure. The individual structure elements are referred

to as members. This lesson is concerned with the use of structure within a 'c'

program. We will see how structures are defined, and how their individual

members are accessed and processed within a program. The relationship

between structures and pointers, arrays and functions will also be examined.

Closely associated with the structure is the union, which also contains

multiple members.

9.2. OBJECTIVES

After going through this lesson you will be able to

 Explain the basic concepts of structure

 Process a structure

 Use typedef statement

 Explain the between structures and pointers relate structure to a function

 Explain the concept of unions

81

Structures and Unions

NOTES

Self-instructional Material

9.3. STRUCTURES

 Array is a data structure whose element is all of the same data type.

Now we are going towards structure, which is a data structure whose

individual elements can differ in type. Thus a single structure might contain

integer elements, floating– point elements and character elements. Pointers,

arrays and other structures can also be included as elements within a

structure. The individual structure elements are referred to as members.

 Structures are used to represent a record. Suppose you want to keep

track of your books in a library. You might want to track the following

attributes about each book −

 Title

 Author

 Subject

 Book ID

9.3.1. Basics of Structures

Structure is a method of packing data of different types. A structure is

a convenient method of handling a group of related data items of different

data types. Structure definition is as follows,

General format:

struct tag_name

{

data type member1;

data type member2;

…

…

}

In this declaration, struct is a required keyword; tag is a name that

identifies structures of this type. The individual members can be ordinary

variables, pointers, arrays or other structures. The member names within a

particular structure must be distict from one another, though a member name

can be same as the name of a variable defined outside of the structure. A

storage class, however, cannot be assigned to an individual member, and

individual members cannot be initialized within a structure-type declaration.

For example:

struct student

{

char name [80];

int roll_no;

float marks;

};

we can now declare the structure variable s1 and s2 as follows:

struct student s1, s2;

s1 and s2 are structure type variables whose composition is identified by the

tag student.

It is possible to combine the declaration of the structure composition with

that of the structure variable as shown below.

82

Structures and Unions

 NOTES

Self-instructional Material

storage- class struct tag

{

member 1;

member 2;

- ——

- —-

- member m;

} variable 1, variable 2 --------- variable n;

The tag is optional in this situation.

struct student

{

char name [80];

int roll_no;

float marks;

}s1,s2;

The s1, s2, are structure variables of type student. Since the variable

declarations are now combined with the declaration of the structure type, the

tag need not be included. As a result, the above declaration can also be

written as struct{ char name [80]; int roll_no; float marks ; } s1, s2, ; A

structure may be defined as a member of another structure. In such

situations, the declaration of the embedded structure must appear before the

declaration of the outer structure. The members of a structure variable can be

assigned initial values in much the same manner as the elements of an array.

The initial values must appear in the order in which they will be assigned to

their corresponding structure members, enclosed in braces and separated by

commas. The general form is

storage-class struct tag variable = { value1, value 2,-------, value

m};

A structure variable, like an array can be initialized only if its storage

class is either external or static.

Processing a Structure

 The members of a structure are usually processed individually, as

separate entities. Therefore, we must be able to access the individual

structure members. A structure member can be accessed by writing

variable.member name.

This period (.) is an operator, it is a member of the highest

precedence group, and its associativity is left-to-right.

e.g. if we want to print the detail of a member of a structure then we can

write as

printf(“%s”,st.name); or printf(“%d”, st.roll_no) and so on. More complex

expressions involving the repeated use of the period operator may also be

written. For example, if a structure member is itself a structure, then a

member of the embedded structure can be accessed by writing.

variable.member.submember.

Thus in the case of student and dob structure, to access the month of

date of birth of a student, we would write

st.d1.month

83

Structures and Unions

NOTES

Self-instructional Material

The use of the period operator can be extended to arrays of structure, by

writing

array [expression]. member

Structures members can be processed in the same manner as ordinary

variables of the same data type. Single-valued structure members can appear

in expressions. They can be passed to functions and they can be returned

from functions, as though they were ordinary single-valued variables.

e.g. suppose that s1 and s2 are structure variables having the same

composition as described earlier. It is possible to copy the values of s1 to s2

simply by writing

s2=s1;

It is also possible to pass entire structure to and from functions

though the way this is done varies from one version of 'C' to another.

9.3.2. Array of Structures

 It is possible to define an array of structures for example if we are

maintaining information of all the students in the college and if 100 students

are studying in the college. We need to use an array than single

variables. We can also make array of structures. In the first example in

structures, we stored the data of 3 students. Now suppose we need to store

the data of 100 such children. Declaring 100 separate variables of structure is

definitely not a good option. For that, we need to create an array of

structures.

For example, we are storing employee details such as name, id, age,

address and salary. Normally we group them as employee structure with the

above mentioned members. We can create the structure variable to access or

modify the structure members. A company may have 10 to 100 employees,

how about storing the same for 100 employees?

In C Programming, We can easily solve the above mentioned

problem by combining 2 powerful concepts Arrays and Structures in C. We

can create the employee structure with the above mentioned members and

then instead of creating the structure variable, we create the array of structure

variable.

. /* Array of Structures in C Initialization */

struct Employee

{

 int age;

 char name[50];

 int salary;

} Employees[4] = {

 {25, "Suresh", 25000},

 {24, "Tutorial", 28000},

 {22, "Gateway", 35000},

 {27, "Mike", 20000}

 };

Here, Employee structure is used for storing the employee details

such as age, name and salary. We created the array of structures variable

Employees [4] (with size 4) at the declaration time only. We also initialized

the values of each and every structure member for all the 4 employees.

https://www.tutorialgateway.org/c-programming/

84

Structures and Unions

 NOTES

Self-instructional Material

9.3.3. Pointers to Structures

 The beginning address of a structure can be accessed in the same

manner as any other address, through the use of the address (&) operator.

Thus, if variable represents a structure type variable, then & variable

represents the starting address of that variable. We can declare a pointer

variable for a structure by writing

type *ptr;

Where type is a data type those identities the composition of the structure,

and ptr represents the name of the pointer variable. We can then assign the

beginning address of a structure variable to this pointer by writing

ptr= &variable;

Let us take the following example:

typedef struct

{

char name [40];

int roll_no;

float marks;

}student; student s1,*ps;

In this example, s1 is a structure variable of type student, and ps is a

pointer variable whose object is a structure variable of type student. Thus,

the beginning address of s1 can be assigned to ps by writing.

ps = &s1;

An individual structure member can be accessed in terms of its

corresponding pointer variable by writing

ptr →member

Where ptr refers to a structure- type pointer variable and the operator

→ is comparable to the period (.) operator. The associativity of this operator

is also left-to-right.

The operator → can be combined with the period operator (.) to

access a submember within a structure. Hence, a submember can be accessed

by writing

ptr → member.submember

9.3.4. Self-referential Structures

 An array is a collection of homogeneous elements but in the real

world, we may need to include different types of logically related data.

Types of Self Referential Structures

 Self Referential Structure with Single Link

 Self Referential Structure with Multiple Links

Self Referential Structure with Single Link: These structures can

have only one self-pointer as their member. The following example will

show us how to connect the objects of a self-referential structure with the

single link and access the corresponding data members.

Self Referential Structure with Multiple Links: Self referential

structures with multiple links can have more than one self-pointers. Many

complicated data structures can be easily constructed using these structures.

Such structures can easily connect to more than one nodes at a time.

To store different data such as name, age, contact, etc. associated

with a single entity, we make use of structures. A structure is, therefore,

85

Structures and Unions

NOTES

Self-instructional Material

capable of storing heterogeneous data under a single name and the data

elements are called as members. A structure that contains pointers to a

structure of its own type is known as self-referential structure.

In other words, a self-referential C structure is the one which includes

a pointer to an instance of itself.

Figure 16: - C Linked List

Syntax of Self-Referential Structure in C Programming
 struct demo

{

 datatype member1, member2;

 struct demo *ptr1, *ptr2;

}

 As you can see in the syntax, ptr1 and ptr2 are structure pointers that

are pointing to the structure demo, so structure demo is a self referential

structure. These types of data structures are helpful in implementing data

structures like linked lists and trees.

Self Referential Structure Example

1

2

3

4

5

struct node

{

 int data;

 struct node *link;

};

The concept of linked lists, stacks, queues, trees and many others works on

the principle of self-referential structures.

9.4. UNIONS

 Union, like structures, contains members whose individual data types

may differ from one another. However, the members that compose a union

all share the same storage area within the computer’s memory, whereas each

member within a structure is assigned its own unique storage area. Thus,

unions are used to conserve memory.

In general terms, the composition of a union may be defined as

union tag

{

member1;

member 2;

- - -

member m };

Where union is a required keyword and the other terms have the same

meaning as in a structure definition. Individual union variables can then be

declared as storage-class union tag variable1, variable2, -----, variable n;

where storage-class is an optional storage class specifier, union is a required

https://www.codingalpha.com/singly-linked-list-c-program-data-structures/
https://www.codingalpha.com/stack-using-linked-list-c-program/
https://www.codingalpha.com/queue-using-linked-list-c-program/

86

Structures and Unions

 NOTES

Self-instructional Material

keyword, tag is the name that appeared in the union definition and variable 1,

variable 2, variable n are union variables of type tag.

The two declarations may be combined, just as we did in the case of

structure. Thus, we can write.

Storage-class union tag

{

member1;

member 2;

- - -

member m }variable 1, varibale2,, variable n;

The tag is optional in this type of declaration. Let us take a 'C'

program which contains the following union declaration:

union code

{

char color [5];

int size ;

}purse, belt;
Here we have two union variables, purse and belt, of type code. Each

variable can represent either a 5–character string (color) or an integer

quantity (size) of any one time.

A union may be a member of a structure, and a structure may be a

member of a union. An individual union member can be accessed in the

same manner as an individual structure members, using the operators (→)

and. Thus if variable is a union variable, then varibale.member refers to a

member of the union. Similarly, if ptr is a pointer variable that points to a

union, then ptr→ member refers to a member of that union.

Unions are processed in the same manner, and with the same

restrictions as structures. Thus, individual union members can be processed

as though they were ordinary variables of the same data type and pointers to

unions can be passed to or from functions.

9.5. LET US SUM UP

 In this unit, you have learnt about the basics of structures, arrays of

structures, pointers to structures and union supported by C language. This

knowledge would make you understand the basic concept of structure; array

is implemented with structure and understands the concept of union. Thus,

the structures and unions unit would have brought you to closer to know the

concept of structures and unions.

9.6. UNIT – END QUESTIONS

1. Describe about the structures and its implementation with example.

2. Describe about the union and differentiate the structure and union.

9.7. ANSWER TO CHECK YOUR PROGRESS

87

Structures and Unions

NOTES

Self-instructional Material

1. Structure is a method of packing data of different types. A structure is a

convenient method of handling a group of related data items of different data

types. The beginning address of a structure can be accessed in the same

manner as any other address, through the use of the address (&) operator.

Thus, if variable represents a structure type variable, then & variable

represents the starting address of that variable.

.

2. Union, like structures, contains members whose individual data types may

differ from one another. However, the members that compose a union all

share the same storage area within the computer’s memory, whereas each

member within a structure is assigned its own unique storage area. Thus,

unions are used to conserve memory. Unions are processed in the same

manner, and with the same restrictions as structures. Thus, individual union

members can be processed as though they were ordinary variables of the

same data type and pointers to unions can be passed to or from functions.

9.8. SUGGESTED READINGS

1. “C Primer Plus”, Stephen Prata, Addison-Wesley Professional, Sixth

Edition, 2013.

2. “Sams Teach Yourself C Programming in One Hour a Day”, Bradley L.

Jones, Sams Publishing, Seventh Edition, 2013.

3. “C-How to Program”, Paul Deitel & Harvey Deitel, Prentice-Hall

Publications, Seventh Edition, 2013.

4. “Programming with ANSI and Turbo C”, Ashok Kamthane, Pearson

Education India, 2006.

5. “C Programming Absolute Beginners Guide”, Greg Perry & Dean Miller,

Que Publishing, Third Edition, 2013.

6. “Programming in C”, Stephen G. Kochan, Addison-Wesley Professional,

Fourth Edition, 2014.

7. “Programming in ANSI C”, E. Balagurusamy, McGraw Hill Publications,

Eighth Edition, 2019.

8. “Let Us C”, Yashavant Kanetkar, BPB Publications, Sixteenth Edition,

2017.

88

Functions

NOTES

Self-instructional Material

UNIT X – FUNCTIONS

Structure

10.1. Introduction

10.2. Objective

10.3. Functions

10.3.1. Function Philosophy

10.3.2. Function Basics

10.3.3. Function Prototypes

10.3.4. Passing Arguments

10.3.5. Passing parameter by value and Passing parameter by

Reference

10.3.6. Passing string to function

10.3.7. Passing array to function

10.3.8. Structures and Functions

10.3.9. Recursion

10.4. Let Us Sum Up

10.5. Unit – End Exercises

10.6. Answer to Check Your Progress

10.7. Suggested Readings

10.1. INTRODUCTION

In the earlier lessons we have already seen that C supports the use of

library functions, which are used to carry out a number of commonly used

operations or calculations. C also allows programmers to define their own

functions for carrying out various individual tasks. In this lesson we will

cover the creation and utilization of such user defined functions.

10.2. OBJECTIVES

After going through this lesson you will be able to

 Explain of function.

 Describe access to function.

 Define parameters data types’ specification.

 Explain function prototype and recursion.

10.3. FUNCTIONS

10.3.1. Function Philosophy

The use of user-defined functions allows a large program to be

broken down into a number of smaller, self-contained components, each of

which has some unique, identifiable purpose. Thus a C program can be

modularized through the intelligent use of such functions. There are several

advantages to this modular approach to program development. For example

many programs require a particular group of instructions to be accessed

repeatedly from several different places within a program. The repeated

instruction can be placed within a single function, which can then be

accessed whenever it is needed. Moreover, a different set of data can be

89

Functions

NOTES

Self-instructional Material

transferred to the function each time it is accessed. Thus, the use of a

function avoids the need for redundant (repeating) programming of the same

instructions. The decomposition of a program into individual program

modules is generally considered to be an important part of good

programming.

10.3.2. Function Basics

 Function is a self-contained program segment that carries out some

specific well-defined task. Every C program consists of one or more

functions. The most important function is main. Program execution will

always begin by carrying out the instruction in main. The definitions of

functions may appear in any order in a program file because they are

independent of one another. A function can be executed from anywhere

within a program. Once the function has been executed, control will be

returned to the point from which the function was accessed. Functions

contain special identifiers called parameters or arguments through which

information is passed to the function and from functions information is

returned via the return statement. It is not necessary that every function must

return information, there are some functions also which do not return any

information for example the system defined function printf. Before using any

function it must be defined in the program. Function definition has three

principal components: the first line, the parameter declarations and the body

of the functions. The first line of a function definition contains the data type

of the information return by the function, followed by function name, and a

set of arguments or parameters, separated by commas and enclosed in

parentheses. The set of arguments may be skipped over. The data type can be

omitted if the function returns an integer or a character. An empty pair of

parentheses must follow the function name if the function definition does not

include any argument or parameters.

The general term of first line of functions can be written as:

data-type function-name (formal argu 1, formal argu 2…formal

argument n)

The formal arguments allow information to be transferred from the

calling portion of the program to the function. They are also known as

parameters or formal parameters. These formal arguments are called actual

parameters when they are used in function reference. The names of actual

parameters and formal parameters may be either same or different but their

data type should be same. All formal arguments must be declared after the

definition of function. The remaining portion of the function definition is a

compound statement that defines the action to be taken by the function. This

compound statement is sometimes referred to as the body of the function.

This compound statement can contain expression statements, other

compound statements, control statements etc. Information is returned from

the function to the calling portion of the program via the return statement.

The return statement also causes control to be returned to the point from

which the function was accessed.

A function is a self-contained block of statements that perform a

coherent task of some kind. Every C program can be thought of as a

collection of these functions.

 main()

90

Functions

NOTES

Self-instructional Material

 {

 message() ;

 printf ("\nCry, and you stop the monotony!") ;

 }

 message()

 {

 printf ("\nSmile, and the world smiles with you...") ;

 }

And here’s the output...

 Smile, and the world smiles with you...

 Cry, and you stop the monotony!

 Here, main() itself is a function and through it we are calling the

function message(). What do we mean when we say that main() ‘calls’ the

function message()? We mean that the control passes to the function

message(). The activity of main() is temporarily suspended; it falls asleep

while the message() function wakes up and goes to work. When the

message() function runs out of statements to execute, the control returns to

main(), which comes to life again and begins executing its code at the exact

point where it left off. Thus, main() becomes the ‘calling’ function, whereas

message() becomes the ‘called’ function.

 In general terms, the return statement is written as

return expression;

The value of the expression is returned to the calling portion of the

program. The return statement can be written without the expression.

Without the expression, return statement simply causes control to revert back

to the calling portion of the program without any information transfer. The

point to be noted here is that only one expression can be included in the

return statement. Thus, a function can return only one value to the calling

portion of the program via return. But a function definition can include

multiple return statements, each containing a different expression. Functions

that include multiple branches often require multiple returns.

It is not necessary to include a return statement altogether in a

program. If a function reaches the end of the block without encountering a

return statement, control simply reverts back to the calling portion of the

program without returning any information.

If you have grasped the concept of ‘calling’ a function you are

prepared for a call to more than one function.

From this program a number of conclusions can be drawn:

 Any C program contains at least one function.

 If a program contains only one function, it must be main().

 If a C program contains more than one function, then one (and only one) of

these functions must be main(), because program execution always begins

with main().

 There is no limit on the number of functions that might be present in a C

program.

 Each function in a program is called in the sequence specified by the

function calls in main().

 After each function has done its thing, control returns to main().When

main() runs out of function calls, the program ends.

91

Functions

NOTES

Self-instructional Material

 As we have noted earlier the program execution always begins with

main(). Except for this fact all C functions enjoy a state of perfect equality.

No precedence, no priorities, nobody is nobody’s boss. One function can call

another function it has already called but has in the meantime left

temporarily in order to call a third function which will sometime later call

the function that has called it.

Why use Function?

Two reasons:

(a) Writing functions avoids rewriting the same code over and over.

(b) Using functions it becomes easier to write programs and keep track of what

they are doing. If the operation of a program can be divided into separate

activities, and each activity placed in a different function, then each could be

written and checked more or less independently. Separating the code into

modular functions also makes the program easier to design and understand.

Passing Values between Functions

 The functions that we have used so far haven’t been very flexible. In

short, now we want to communicate between the ‘calling’ and the ‘called’

functions.

The mechanism used to convey information to the function is the ‘argument’.

You have unknowingly used the arguments in the printf() and scanf()

functions; the format string and the list of variables used inside the

parentheses in these functions are arguments. The arguments are sometimes

also called ‘parameters’.

10.3.3. Function Prototypes

 A function prototype is a declaration that indicates the types of the

function's parameters as well as its return value. For example:

 double pow(double, double); // prototype of pow()

 This prototype informs the compiler that the function pow() expects

two arguments of type double, and returns a result of type double. Each

parameter type may be followed by a parameter name. This name has no

more significance than a comment, however, since its scope is limited to the

function prototype itself. For example:

 double pow(double base, double exponent);

Functions that do not return any result are declared with the type specifier

void. For example:

 void func1(char *str); // func1 expects one string

 // argument and has no return

 // value.

Functions with no parameters are declared with the type specifier void in the

parameter list:

 int func2(void); // func2 takes no arguments and

 // returns a value with type int.

 Function declarations should always be in prototype form. All

standard C functions are declared in one (or more) of the standard header

files. For example, math.h contains the prototypes of the mathematical

functions, such as sin(), cos(), pow(), etc., while stdio.h contains the

prototypes of the standard input and output functions.

92

Functions

NOTES

Self-instructional Material

Function Definitions

The general form of a function definition is:

 [storage_class] [type] name(

 [parameter_list]) // function declarator

 {

 /* declarations, statements */ // function body

 }

storage_class

 One of the storage class specifiers extern or static. Because extern is

the default storage class for functions, most function definitions do not

include a storage class specifier.

type

 The type of the function's return value. This can be either void or any

other type, except an array.

name

 The name of the function.

parameter_list

 The declarations of the function's parameters. If the function has no

parameters, the list is empty.

Here is one example of a function definition:

 long sum(int arr[], int len)// Find the sum of the first

 { // len elements of the array arr

 int i;

 long result = 0;

 for(i = 0; i < len; ++i)

 result += (long)arr[i];

 return result;

 }

 Because by default function names are external names, the functions

of a program can be distributed among different source files, and can appear

in any sequence within a source file.

Functions that are declared as static, however, can only be called in the same

translation unit in which they are defined. But it is not possible to define

functions with block scope—in other words, a function definition cannot

appear within another function.

 The parameters of a function are ordinary variables whose scope is

limited to the function. When the function is called, they are initialized with

the values of the arguments received from the caller.

 The statements in the function body define what the function does.

When the flow of execution reaches a return statement or the end of the

function body, control returns to the calling function.

 A function that calls itself, directly or indirectly, is called recursive. C

permits the definition of recursive functions, since variables with automatic

storage class are created anew—generally in stack memory—with each

function call.

 The function declarator shown above is in prototype style. Today's

compilers still support the older Kernighan-Ritchie style, however, in which

93

Functions

NOTES

Self-instructional Material

the parameter identifiers and the parameter type declarations are separate.

For example:

 long sum(arr, len) // Parameter identifier list

 int arr[], len; // Parameter declarations

 { ... } // Function body

 In ANSI C99, functions can also be defined as inline. The inline

function specifier instructs the compiler to optimize the speed of the function

call, generally by inserting the function's machine code directly into the

calling routine. The inline keyword is prefixed to the definition of the

function:

 inline int max(int x, int y)

 { return (x >= y ? x : y); }

 If an inline function contains too many statements, the compiler may

ignore the inline specifier and generate a normal function call.

 An inline function must be defined in the same translation unit in

which it is called. In other words, the function body must be visible when the

inline "call" is compiled. It is therefore a good idea to define inline

functions—unlike ordinary functions—in a header file.

 Inline functions are an alternative to macros with parameters. In

translating a macro, the preprocessor simply substitutes text. An inline

function, however, behaves like a normal function—so that the compiler

tests for compatible arguments, for example—but without the jump to and

from another code location.

10.3.4. Passing Arguments

 Arguments can be passed to a function by two methods, they are

called passing by value and passing by reference. When a single value is

passed to a function via an actual argument, the value of the actual argument

is copied into the function. Therefore, the value of the corresponding formal

argument can be altered within the function, but the value of the actual

argument within the calling routine will not change. This procedure for

passing the value of an argument to a function is known as passing by value.

Let us consider an example

#include main()

{

int x=3;

printf(“\n x=%d(from main, before calling the function”),x);

change(x);

printf(“\n\nx=%d(from main, after calling the function)”,x);

}

change(x) int x;

{

x=x+3;

printf(“\nx=%d(from the function, after being modified)”,x);

return;

}

The original value of x (i.e. x=3) is displayed when main begins

execution. This value is then passed to the function change, where it is sum

94

Functions

NOTES

Self-instructional Material

up by 3 and the new value displayed. This new value is the altered value of

the formal argument that is displayed within the function. Finally, the value

of x within main is again displayed, after control is transferred back to main

from change.

Passing an argument by value allows a single-valued actual argument to be

written as an expression rather than being restricted to a single variable. But

it prevents information from being transferred back to the calling portion of

the program via arguments. Thus, passing by value is restricted to a one-way

transfer of information.

Arrays are passed differently than single-valued entities. If an array

name is specified as an actual argument, the individual array elements are

not copied to the function. Instead the location of the array is passed to the

function. If an element of the array is accessed within the function, the

access will refer to the location of that array element relative to the location

of the first element. Thus, any alteration to an array element within the

function will carry over to the calling routine.

10.3.5. Passing parameter by value and Passing parameter by Reference

 The call by value method of passing arguments to a function copies

the actual value of an argument into the formal parameter of the function. In

this case, changes made to the parameter inside the function have no effect

on the argument.

By default, C programming uses call by value to pass arguments. In

general, it means the code within a function cannot alter the arguments used

to call the function. Consider the function swap() definition as follows.

void swap(int x, int y) {

 int temp;

 temp = x; /* save the value of x */

 x = y; /* put y into x */

 y = temp; /* put temp into y */

 return; }

The call by reference method of passing arguments to a function

copies the address of an argument into the formal parameter. Inside the

function, the address is used to access the actual argument used in the call. It

means the changes made to the parameter affect the passed argument.

To pass a value by reference, argument pointers are passed to the

functions just like any other value. So accordingly you need to declare the

function parameters as pointer types as in the following function swap(),

which exchanges the values of the two integer variables pointed to, by their

arguments.

void swap(int *x, int *y) {

 int temp;

 temp = *x; /* save the value at address x */

 *x = *y; /* put y into x */

 y = temp; / put temp into y */

 return; }

It shows that the change has reflected outside the function as well,

unlike call by value where the changes do not reflect outside the function.

95

Functions

NOTES

Self-instructional Material

10.3.6. Passing string to function

 A string is a sequence of characters enclosed in double quotes. For

example, "Hello World" is a string and it consists of a sequence of English

letters in both uppercase and lowercase and the two words are separated by a

white space. So, there are total 11 characters.

We know that a string in C programming language ends with a

NULL \0 character. So, in order to save the above string we will need an

array of size 12. The first 11 places will be used to store the words and the

space and the 12th place will be used to hold the NULL character to mark

the end.

Function declaration to accept one dimensional string

We know that strings are saved in arrays so, to pass an one

dimensional array to a function we will have the following declaration.

 returntype fuctionname(char str[])

Example

 void displayString(char str[])

In the above example we have a function by the

name displayString and it takes an argument of type char and the argument is

an one dimensional array as we are using the [] square brackets.

Passing one dimensional string to a function

To pass a one dimensional string to a function as an argument we just

write the name of the string array variable.

In the following example we have a string array variable message and

it is passed to the displayString function.

10.3.7. Passing array to function

 In C, there are various general problems which require passing more

than one variable of the same type to a function. For example, consider a

function which sorts the 10 elements in ascending order. Such a function

requires 10 numbers to be passed as the actual parameters from the main

function. Here, instead of declaring 10 different numbers and then passing

into the function, we can declare and initialize an array and pass that into the

function. This will resolve all the complexity since the function will now

work for any number of values.

As we know that the array_name contains the address of the first

element. Here, we must notice that we need to pass only the name of the

array in the function which is intended to accept an array. The array defined

as the formal parameter will automatically refer to the array specified by the

array name defined as an actual parameter.

Consider the following syntax to pass an array to the function.

functionname(arrayname);//passing array

Methods to declare a function that receives an array as an argument

There are 3 ways to declare the function which is intended to receive

an array as an argument.

First way:

return_type function(type arrayname[])

Declaring blank subscript notation [] is the widely used technique.

https://www.dyclassroom.com/c/c-string

96

Functions

NOTES

Self-instructional Material

Second way:

return_type function(type arrayname[SIZE])

Optionally, we can define size in subscript notation [].

Third way:

return_type function(type *arrayname)

Returning array from the function

As we know that, a function cannot return more than one value.

However, if we try to write the return statement as return a, b, c; to return

three values (a,b,c), the function will return the last mentioned value which is

c in our case. In some problems, we may need to return multiple values from

a function. In such cases, an array is returned from the function.

Returning an array is similar to passing the array into the function.

The name of the array is returned from the function. To make a function

returning an array, the following syntax is used.

int * Function_name() {

//some statements;

return array_type;

}

To store the array returned from the function, we can define a pointer

which points to that array. We can traverse the array by increasing that

pointer since pointer initially points to the base address of the array.

10.3.8. Structures and Functions

A structure can be passed to any function from main function or from

any sub function. Structure definition will be available within the function

only. It won’t be available to other functions unless it is passed to those

functions by value or by address(reference). Else, we have to declare

structure variable as global variable. That means, structure variable should be

declared outside the main function. So, this structure will be visible to all the

functions in a C program.

Passing Structure to Function In C:

It can be done in below 3 ways.

 Passing structure to a function by value

 Passing structure to a function by address(reference)

 No need to pass a structure – Declare structure variable as global

The whole structure is passed to another function by value. It means

the whole structure is passed to another function with all members and their

values. So, this structure can be accessed from called function. This concept

is very useful while writing very big programs in C.

The whole structure is passed to another function by address. It

means only the address of the structure is passed to another function. The

whole structure is not passed to another function with all members and their

values. So, this structure can be accessed from called function by its address.

Structure variables also can be declared as global variables as we

declare other variables in C. So, when a structure variable is declared as

global, then it is visible to all the functions in a program. In this scenario, we

don’t need to pass the structure to any function separately.

97

Functions

NOTES

Self-instructional Material

10.3.9. Recursion

 Many C compilers permits each of the argument data types within a

function declaration to be followed by an argument name, that is

data-type function name (type1 argument 1, type 2 argument2…

type n argument n);

Function declarations written in this form are called function

prototypes.

Function prototypes are desirable, however, because they further

facilitate error checking between the calls to a function and the

corresponding function definition. Some of the function prototypes are given

below:

int example (int, int); or int example (int a, int b);

void example 1(void); or void example 1(void);

void fun (char, long); or void fun (char c, long f);

The names of the arguments within the function declaration need not

be declared elsewhere in the program, since these are “dummy” argument

names recognized only within the declaration. “C” language also permits the

useful feature of ‘Recursion’.

Recursion is a process by which a function calls itself repeatedly,

until some specified condition has been satisfied. The process is used for

repetitive computations in which each action is stated in terms of a precious

result. In order to solve a problem recursively, two conditions must be

satisfied. The problem must be written in a recursive form, and the problem

statement must include a stopping condition. The best example of recursion

is calculation of factorial of a integer quantity, in which the same procedure

is repeating itself. Let us consider the example of factorial:

#include main()

{ int number;

long int fact(int number);

printf(“Enter number”);

scanf(“%d”, & number);

printf(“Factorial of number is % d\n”, fact(number)); }

long int fact(int number)

{ if(number <=1) return(1);

else return(number *fact(number-1)); }

The point to be noted here is that the function ‘fact’ calls itself

recursively, with an actual argument (n-1) that decrease in value for each

successive call. The recursive calls terminate the value of the actual

argument becomes equal to 1.

When a recursive program is executed, the recursive function calls

are not executed immediately. Instead of it, they are placed on a stack until

the condition that terminates the recursion is encountered. The function calls

are then executed in reverse order, as they are popped off the stack. The use

of recursion is not necessarily the best way to approach a problem, even

though the problem definition may be recursive in nature.

98

Functions

NOTES

Self-instructional Material

10.4. LET US SUM UP

 In this unit, you have learnt about the basics of functions, function

prototypes, function arguments, passing parameters and recursion function of

C language. This knowledge would make you understand the basic concept

of functions; structure of a function and type of arguments used, and

understands the recursion function also. Thus, the functions unit would have

brought you to closer to know the concept of functions of C language.

10.5. UNIT – END QUESTIONS

1. Explain the basic concept of functions and its prototype with example.

2. Discuss about the types of passing parameters with example.

3. Define recursion function with example.

10.6. ANSWER TO CHECK YOUR PROGRESS

1. Function is a self-contained program segment that carries out some specific

well-defined task. Every C program consists of one or more functions. The

most important function is main. Program execution will always begin by

carrying out the instruction in main. The definitions of functions may appear

in any order in a program file because they are independent of one another.

A function can be executed from anywhere within a program. Once the

function has been executed, control will be returned to the point from which

the function was accessed. Functions contain special identifiers called

parameters or arguments through which information is passed to the function

and from functions information is returned via the return statement..

2. Arguments can be passed to a function by two methods, they are called

passing by value and passing by reference. When a single value is passed to

a function via an actual argument, the value of the actual argument is copied

into the function. Therefore, the value of the corresponding formal argument

can be altered within the function, but the value of the actual argument

within the calling routine will not change. This procedure for passing the

value of an argument to a function is known as passing by value.

3. Recursion is a process by which a function calls itself repeatedly, until some

specified condition has been satisfied. The process is used for repetitive

computations in which each action is stated in terms of a precious result. In

order to solve a problem recursively, two conditions must be satisfied. The

problem must be written in a recursive form, and the problem statement must

include a stopping condition.

10.7. SUGGESTED READINGS

1. “Programming in C”, Stephen G. Kochan, Addison-Wesley Professional,

Fourth Edition, 2014.

99

Functions

NOTES

Self-instructional Material

2. “Programming in ANSI C”, E. Balagurusamy, McGraw Hill Publications,

Eighth Edition, 2019.

3. “Let Us C”, Yashavant Kanetkar, BPB Publications, Sixteenth Edition,

2017.

4. “Head First C: A Brain-Friendly Guide”, David Griffiths & Dawn Griffiths,

O’Reilly Publications, 2012.

100

Storage Classes

NOTES

Self-instructional Material

UNIT XI – STORAGE CLASSES

Structure

11.1. Introduction

11.2. Objective

11.3. Storage Classes and Visibility

11.4. Automatic or local Pointers and Strings

11.5. Global Variables

11.6. Statics Variables

11.7. External Variables

11.8. Let Us Sum Up

11.9. Unit – End Exercises

11.10. Answer to Check Your Progress

11.11. Suggested Readings

11.1. INTRODUCTION

We learn through this lesson as Storage class in C decides the part of

storage to allocate memory for a variable; it also determines the scope of a

variable. All variables defined in a C program get some physical location in

memory where variable's value is stored. Memory and CPU registers are

types of memory locations where a variable's value can be stored. The

storage class of a variable in C determines the life time of the variable if this

is 'global' or 'local'. Along with the life time of a variable, storage class also

determines variable's storage location (memory or registers), the scope

(visibility level) of the variable, and the initial value of the variable.

11.2. OBJECTIVES

After going through this lesson you will be able to

 Explain of storage classes and visibility.

 Describe access to Pointers and Strings.

 Define Global and Static Variables.

 Explain external variables.

11.3. STORAGE CLASSES AND VISIBILITY

 Storage class in C decides the part of storage to allocate memory for

a variable; it also determines the scope of a variable. All variables defined in

a C program get some physical location in memory where variable's value is

stored. Memory and CPU registers are types of memory locations where a

variable's value can be stored. The storage class of a variable in C determines

the life time of the variable if this is 'global' or 'local'. Along with the life

time of a variable, storage class also determines variable's storage location

(memory or registers), the scope (visibility level) of the variable, and the

initial value of the variable. There are four storage classes in C those

are automatic, register, static, and external.

101

 Self-instructional Material

Storage Classes

NOTES

A storage class represents the visibility and a location of a variable. It

tells from what part of code we can access a variable. A storage class is used

to describe the following things:

 The variable scope.

 The location where the variable will be stored.

 The initialized value of a variable.

 A lifetime of a variable.

Thus a storage class is used to represent the information about a variable.

A variable is not only associated with a data type, its value but also a

storage class. There are total four types of standard storage classes. The table

below represents the storage classes in 'C'.

Storage Class Specifiers

There are four storage class Specifiers in C as

follows, typedef specifier does not reserve storage and is called a storage

class specifier only for syntactic convenience. It is not a storage class

specifier in the common meaning.

 auto

 register

 extern

 static

 typedef

These specifiers tell the compiler how to store the subsequent

variable. The general form of a variable declaration that uses a storage class

is shown here:

 storage_class_specifier data_type variable_name;

At most one storage class specifier may be given in a declaration. If no

storage class specifier is specified then following rules are used:

 Variables declared inside a function are taken to be auto.

 Functions declared within a function are taken to be extern.

 Variables and functions declared outside a function are taken to be static,

with external linkage.

Variables and functions having external linkage are available to all

files that constitute a program. File scope variables and functions declared

as static (described shortly) have internal linkage. These are known only

within the file in which they are declared. Local variables have no linkage

and are therefore known only within their own block.

Types of Storage Classes

There are four storage classes in C they are as follows:

 Automatic Storage Class

 Register Storage Class

 Static Storage Class

 External Storage Class

11.4. AUTOMATIC OR LOCAL POINTERS AND STRINGS

 A variable defined within a function or block with auto specifier

belongs to automatic storage class. All variables defined within a function or

block by default belong to automatic storage class if no storage class is

102

Storage Classes

NOTES

Self-instructional Material

mentioned. Variables having automatic storage class are local to the block

which they are defined in, and get destroyed on exit from the block.

The following C program demonstrates the visibility level of auto variables.

#include <stdio.h>

int main()

{

 auto int i = 1;

 {

 auto int i = 2;

 {

 auto int i = 3;

 printf ("\n%d ", i);

 }

 printf ("%d ", i);

 }

 printf("%d\n", i);

}

Automatic variables are always declared within a function and are

local to the function in which they are declared, that is their scope is

confined to that function. Automatic variables defined in different functions

will therefore be independent of one another. The location of the variable

declarations within the program determine the automatic storage class, the

keyword auto is not required at the beginning of each variable declaration.

These variables can be assigned initial value by including appropriate

expressions within the variable declarations. An automatic variable does not

retain its value once control is transferred out of its defining function. It

means any value assigned to an automatic variable within a function will be

lost once the function is exited. The scope of an automatic variable can be

smaller than an entire function. Automatic variables can be declared within a

single compound statement.

 In above example program you see three definitions for variable i.

Here, you may be thinking if there could be more than one variable with the

same name. Yes, there could be if these variables are defined in different

blocks. So, there will be no error here and the program will compile and

execute successfully. The printf in the inner most block will print 3 and the

variable i defined in the inner most block gets destroyed as soon as control

exits from the block. Now control comes to the second outer block and prints

2 then comes to the outer block and prints 1. Here, note that automatic

variables must always be initialized properly, otherwise you are likely to get

unexpected results because automatic variables are not given any initial

value by the compiler.

11.5. GLOBAL VARIABLES

If a variable is defined outside all functions, then it is called a global

variable.

The scope of a global variable is the whole program. This means, It

can be used and changed at any part of the program after its declaration.

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

103

 Self-instructional Material

Storage Classes

NOTES

Global variables: are variables which are declared above the main()

function. These variables are accessible throughout the program. They can be

accessed by all the functions in the program. Their default value is zero.

Example:

#include <stdio.h>

int x = 0;/*Variable x is a global variable. It can be accessed throughout

the program */void increment(void) {

x = x + 1;

printf("\n value of x: %d", x);}

int main(){printf("\n value of x: %d", x);

increment();

return 0;

}

11.6. STATIC VARIABLES

 Static variables are defined within individual functions and therefore

have a same scope as automatic variables, i.e. they are local to the functions

in which they are defined. Static variables retain their values throughout the

program. Thus, if a function is exited and reentered later, the static variables

defined within that function will retain their former values. Static variables

are defined within a function in the same manner as automatic variables, but

its declaration must begin with the static storage class designation. They

cannot be accessed outside of their defining function. Initial values can be

included in static variable declarations. The initial value must be expressed

as constants, not expression, the initial values are assigned to their respective

variables at the beginning of program, execution. The variables retain these

values throughout the program, unless different values are assigned during

the program. This is all for storage classes auto, extern and static.

Let us consider and example of static variables:

static int a;

If the keyword static is replaced with the keyword auto, the variable

is declared to be of storage class auto. If a static local variable is assigned a

value the first time the function is called, that value is still there when the

function is called second time.

display_number()

{

static int number=2;

printf(“number=%d\n”, number); number++;

}

When the first time display_number is called, it prints the value 2, to

which number is initialized. Then number is incremented to 3, and

terminates. The second time display_number is called, it prints the value of

3. On the third call, the value printed is 4 and so on. Point to be noted here is

that the initialization is not performed after the first call. An initialization

used in a declaration occurs only once-when the variable is allocated. Since a

static variable is allocated only once, the initialization occurs only during the

entire program; no matter how many times the function is called. When the

display_number function in the example is called the second time, the value

104

Storage Classes

NOTES

Self-instructional Material

found in the variable number is the value left there by the previous call to the

function.

11.7. EXTERNAL VARIABLES

 The extern specifier gives the declared variable external storage class.

The principal use of extern is to specify that a variable is declared

with external linkageelsewhere in the program. To understand why this is

important, it is necessary to understand the difference between a declaration

and a definition. A declaration declares the name and type of a variable or

function. A definition causes storage to be allocated for the variable or the

body of the function to be defined. The same variable or function may have

many declarations, but there can be only one definition for that variable or

function.

 When extern specifier is used with a variable declaration then no

storage is allocated to that variable and it is assumed that the variable has

already been defined elsewhere in the program. When we

use extern specifier the variable cannot be initialized because

with extern specifier variable is declared, not defined.

External variables are not confined to single functions. Their scope

extends from the point of definition through the remainder of the program.

External variable are recognized globally, that means they are recognized

throughout the program, they can be accessed from any function that falls

within their scope. They retain their assigned values within their scope.

Therefore, an external variable can be assigned a value within one function

and this value can be used within another function. With the use of external

variables one can transfer the information between functions.

External variable definitions and external variable declarations are

not the same thing. An external variable definition is written in the same

manner as an ordinary variable declaration. The storage-class specifier extern

is not required in an external variable definition, because these variables will

be identified by the location of their definition within the program. An

external variable declaration must begin with the storage class specifier

extern. The name of the external variable and its data type must agree with

the corresponding external variable definition that appears outside of the

function. The declaration of external variables cannot include the assignment

of initial values. External variables can be assigned initial values as a part of

the variable definitions, but the initial values must be expressed as constants

rather than as expression. These initial values will be assigned only once, at

the beginning of the program. If an initial value is not included in the

definition of an external variable, the variable will automatically be assigned

a value of zero.

11.8. LET US SUM UP

 In this unit, you have learnt about the storage classes and visibility of

C language. This knowledge would make you understand the types of

storage classes and its visibility. Thus, the storage class unit would have

105

 Self-instructional Material

Storage Classes

NOTES

brought you to closer to know the concept of storage class and its visibility

of C language.

11.9. UNIT – END QUESTIONS

1. What is the use of storage class?

2. Explain the following.

 i) Static Variable ii) Automatic variable

3. Explain the following.

 i) External Variable ii) Global variable

11.10. ANSWER TO CHECK YOUR PROGRESS

1. Storage class in C decides the part of storage to allocate memory for a

variable; it also determines the scope of a variable. All variables defined in a

C program get some physical location in memory where variable's value is

stored. Memory and CPU registers are types of memory locations where a

variable's value can be stored. The storage class of a variable in C determines

the life time of the variable if this is 'global' or 'local'. Along with the life

time of a variable, storage class also determines variable's storage location

(memory or registers), the scope (visibility level) of the variable, and the

initial value of the variable. There are four storage classes in C those

are automatic, register, static, and external.

.

2. Static variables are defined within individual functions and therefore have a

same scope as automatic variables, i.e. they are local to the functions in

which they are defined. Static variables retain their values throughout the

program. Thus, if a function is exited and reentered later, the static variables

defined within that function will retain their former values. Static variables

are defined within a function in the same manner as automatic variables, but

its declaration must begin with the static storage class designation.

A variable defined within a function or block with auto specifier belongs to

automatic storage class. All variables defined within a function or block by

default belong to automatic storage class if no storage class is mentioned.

Variables having automatic storage class are local to the block which they

are defined in, and get destroyed on exit from the block.

3. The extern specifier gives the declared variable external storage class. The

principal use of extern is to specify that a variable is declared with external

linkage elsewhere in the program. To understand why this is important, it is

necessary to understand the difference between a declaration and a

definition. A declaration declares the name and type of a variable or

function. A definition causes storage to be allocated for the variable or the

body of the function to be defined. The same variable or function may have

many declarations, but there can be only one definition for that variable or

function.

If a variable is defined outside all functions, then it is called a global

variable.

106

Storage Classes

NOTES

Self-instructional Material

The scope of a global variable is the whole program. This means, It can be

used and changed at any part of the program after its declaration. Global

variables: are variables which are declared above the main() function. These

variables are accessible throughout the program. They can be accessed by all

the functions in the program. Their default value is zero.

11.11. SUGGESTED READINGS

1. “C Primer Plus”, Stephen Prata, Addison-Wesley Professional, Sixth

Edition, 2013.

2. “Sams Teach Yourself C Programming in One Hour a Day”, Bradley L.

Jones, Sams Publishing, Seventh Edition, 2013.

3. “C-How to Program”, Paul Deitel & Harvey Deitel, Prentice-Hall

Publications, Seventh Edition, 2013.

4. “Programming with ANSI and Turbo C”, Ashok Kamthane, Pearson

Education India, 2006.

5. “C Programming Absolute Beginners Guide”, Greg Perry & Dean Miller,

Que Publishing, Third Edition, 2013.

6. “Programming in C”, Stephen G. Kochan, Addison-Wesley Professional,

Fourth Edition, 2014.

107

 Self-instructional Material

The Preprocessor

NOTES

BLOCK IV: STORAGE CLASSES &

FILE MANAGEMENT

UNIT XII – THE PREPROCESSOR

Structure

12.1. Introduction

12.2. Objective

12.3. File Inclusion

12.4. Macro Definition and Substitution

12.5. Macros with Arguments

12.6. Nesting of Macros

12.7. Conditional Compilation

12.8. Let Us Sum Up

12.9. Unit – End Exercises

12.10. Answer to Check Your Progress

12.11. Suggested Readings

12.1. INTRODUCTION

We have already seen many features provided by C language. Yet another

unique feature of the C language is the preprocessor. The C preprocessor

provides several tools that are not available in other high–level languages.

The programmer can use these tools to make his program more efficient in

all respect.

12.2. OBJECTIVES

After going through this lesson you will be able to

 Explain preprocessor working

 Explain the # define Directive

 Define constants

 Explain macros

 Write the various directions such as # undef, #include, #fdef, #ifdef, #ifndef,

else, #if

12.3. FILE INCLUSION

 When you issue the command to compile a C program, the program

is run automatically through the preprocessor. The preprocessor is a program

that modifies the C source program according to directives supplied in the

program. An original source program usually is stored in a file. The

preprocessor does not modify this program file, but creates a new file that

contains the processed version of the program. This new file is then

submitted to the compiler. Some compilers enable the programmer to run

only the preprocessor on the source program and to view the results of the

108

The Preprocessor

NOTES

Self-instructional Material

preprocessor stage. All preprocessor directives begin with the number or

sharp sign (#). They must start in the first column, and no space is required

between the number sign and the directive. The directive is terminated not by

a semicolon, but by the end of the line on which it appears. The C

preprocessor is a collection of special statements called directives that are

executed at the beginning of the compilation process. The #include and #

define statements are preprocessor directives. The job of C preprocessor is to

process the source code before it is passed to the compiler. The Pre-processor

accepts source code as input and is responsible for

 Removing comments.

 Interpreting special pre-processor directives denoted by #.

 #include causes the contents of another file to be compiled as if they

actually appeared in place of the #include directive. The way this substitution

is performed is simple, the Preprocessor removes the directive and

substitutes the contents of the named file. Compiler allows two different

types of #include’s, first is standard library header include, syntax of which

is as follows,

#include <filename.h>

Here, filename.h in angle brackets causes the compiler to search for

the file in a series of standard locations specific to implementation. For

example, gcc compiler on Linux, searches for standard library files in a

directory called /usr/include.

Other type of #include compiler supports is called local include, whose

syntax is as follows,

#include “filename.h”

filename in double quotes “” causes compiler to search for the file

first in the current directory and if it’s not there it’s searched in the standard

locations as usual. Nevertheless, we can write all our #include in double

quotes but this would waste compiler’s some time while trying to locate a

standard library include file. Though, this doesn’t affect runtime efficiency

of program, however, it slows down compilation process.

For Example,

#include <stdio.h>

Notice here that stdio.h is a standard library file which compiler, first,

should required to search in the current directory before locating it in

standard location. A better reason why library header files should be used

with angle brackets is the information that it gives the reader. The angle

brackets make it obvious that

#include <string.h>

references a library file. With the alternate form

#include “string.h”

12.4. MACRO DEFINITION AND SUBSTITUTION

In Macro Substitution an identifier in a program is replaced by a pre defined

string composed of one or more tokens. We can use the #define directive for this

purpose. The definition should start with the keyword #define and should follow

by identifier and a token with at least one blank space between them. The token

may be any text and identifier must be a valid C name. The pre-processor replaces

109

 Self-instructional Material

The Preprocessor

NOTES

every occurrence of the identifier in the source code by token. There are

different forms of macro substitution. The most common form is:

 Simple macro substitution.

 Argument macro substitution.

Simple token replacement is commonly used to define constants.

The #define directive is used to define a symbol to the preprocessor

and assign it a value. The symbol is meaningful to the preprocessor only in

the lines of code following the definition. For example, if the directive

#define NULL 0 is included in the program, then in all lines following the

definition, the symbol NULL is replaced by the symbol. If the symbol NULL

is written in the program before the definition is encountered, however, it is

not replaced. The # define directive is followed by one or more spaces or

tabs and the symbol to be defined. The syntax of a preprocessor symbol is

the same as that for a C variable or function name. It cannot be a C keyword

or a variable name used in the program; if it is so a syntax error is detected

by the compiler. For example, suppose a program contains the directive

#define dumb 52

Which in turn is followed by the declaration

int dumb;

This would be translated by the preprocessor into

int 52;

It merely substitutes symbols where it finds them. The symbol being

defined is followed by one or more spaces or tabs and a value for the symbol.

The value can be omitted, in which case the symbol is defined but not given

a value. If this symbol is used later in the program, it is deleted without being

replaced with anything. If a # define directive does not fit on a single line, it

can be continued on subsequent lines. All lines of the directives except the

last must end with a backslash(\) character. A directive can be split only at a

point where a space is legal.

Syntax part Explanation

#define It is preprocessor directive used to define constant

macro_identifier
It is constant used in the program which we wish to

declare using #define

value It is value of the constant

Table: - Macro definition

#define Preprocessor defines a constant/identifier and a value that is

substituted for identifier/constant each time it is encountered in the source

file. Generally macro-identifiers/constant defined using #define directive are

written in the capital case to distinguish it from other variables. Constants

defined using #define directive are like a name-value pair.

The # undef Directive:-

If a preprocessor symbol has already been defined, it must be

undefined before being redefined. This is accomplished by the #undef

directive, which specifies the name of the symbol to be undefined. It is not

necessary to perform the readefinition at the beginning of a program. A

symbol can be redefined in the middle of a program so that it has one value

110

The Preprocessor

NOTES

Self-instructional Material

in the first part and another value at the end. A symbol need not be redefined

after it is undefined.

12.5. MACROS WITH ARGUMENTS

 A simple macro always stands for exactly the same text, each time

it is used. Macros can be more flexible when they accept "arguments".

Arguments are fragments of code that you supply each time the macro is

used. These fragments are included in the expansion of the macro according

to the directions in the macro definition. A macro that accepts arguments is

called a "function-like macro" because the syntax for using it looks like a

function call.

 To define a macro that uses arguments, you write a `#define'

directive with a list of "argument names" in parentheses after the name of the

macro. The argument names may be any valid C identifiers, separated by

commas and optionally whitespace. The open-parenthesis must follow the

macro name immediately, with no space in between.

 For example, here is a macro that computes the minimum of two

numeric values, as it is defined in many C programs:

 #define min(X, Y) ((X) < (Y) ? (X) : (Y))

 To use a macro that expects arguments, you write the name of the

macro followed by a list of "actual arguments" in parentheses, separated by

commas. The number of actual arguments you give must match the number

of arguments the macro expects. Examples of use of the macro `min' include

`min (1, 2)' and `min (x + 28, *p)'.

 The expansion text of the macro depends on the arguments you use.

Each of the argument names of the macro is replaced, throughout the macro

definition, with the corresponding actual argument. Using the same macro

`min' defined above, `min (1, 2)' expands into

 ((1) < (2) ? (1) : (2))

where `1' has been substituted for `X' and `2' for `Y'.

Likewise, `min (x + 28, *p)' expands into

 ((x + 28) < (*p) ? (x + 28) : (*p))

 Parentheses in the actual arguments must balance; a comma within

parentheses does not end an argument. However, there is no requirement for

brackets or braces to balance, and they do not prevent a comma from

separating arguments. Thus,

 macro (array[x = y, x + 1])

 passes two arguments to `macro': `array[x = y' and `x + 1]'. If you

want to supply `array[x = y, x + 1]' as an argument, you must write it as

`array[(x = y, x + 1)]', which is equivalent C code.

 After the actual arguments are substituted into the macro body, the

entire result is appended to the front of the remaining input, and the check

for macro calls continues. Therefore, the actual arguments can contain calls

to other macros, either with or without arguments, or even to the same

macro. The macro body can also contain calls to other macros. For

example, `min (min (a, b), c)' expands into this text:

 ((((a) < (b) ? (a) : (b))) < (c)

 ? (((a) < (b) ? (a) : (b)))

 : (c))

111

 Self-instructional Material

The Preprocessor

NOTES

 If a macro `foo' takes one argument, and you want to supply an

empty argument, you must write at least some whitespace between the

parentheses, like this: `foo ()'. Just `foo ()' is providing no arguments, which

is an error if `foo' expects an argument. But `foo0 ()' is the correct way to

call a macro defined to take zero arguments, like this:

 #define foo0() ...

 If you use the macro name followed by something other than an

open-parenthesis (after ignoring any spaces, tabs and comments that follow),

it is not a call to the macro, and the preprocessor does not change what you

have written. Therefore, it is possible for the same name to be a variable or

function in your program as well as a macro, and you can choose in each

instance whether to refer to the macro (if an actual argument list follows) or

the variable or function.

 Such dual use of one name could be confusing and should be avoided

except when the two meanings are effectively synonymous: that is, when the

name is both a macro and a function and the two have similar effects. You

can think of the name simply as a function; use of the name for purposes

other than calling it (such as, to take the address) will refer to the function,

while calls will expand the macro and generate better but equivalent code.

For example, you can use a function named `min' in the same source file that

defines the macro.

 If you write `&min' with no argument list, you refer to the function.

If you write `min (x, bb)', with an argument list, the macro is expanded. If

you write `(min) (a, bb)', where the name `min' is not followed by an open-

parenthesis, the macro is not expanded, so you wind

up with a call to the function `min'. You may not define the same name as

both a simple macro and a macro with arguments.

 In the definition of a macro with arguments, the list of argument

names must follow the macro name immediately with no space in between.

If there is a space after the macro name, the macro is defined as taking no

arguments, and all the rest of the line is taken to be the expansion. The

reason for this is that it is often useful to define a macro that takes no

arguments and whose definition begins with an identifier in parentheses.

This rule about spaces makes it possible for you to do either this:

 #define FOO(x) - 1 / (x)

or this:

 #define BAR (x) - 1 / (x)

 Note that the *uses* of a macro with arguments can have spaces

before the left parenthesis; it's the *definition* where it matters whether

there is a space.

12.6. NESTING OF MACROS

 A macro body may also contain further macro definitions. However,

these nested macro definitions aren't valid until the enclosing macro has been

expanded! That means, the enclosing macro must have been called, before

the nested macros can be called.

Example:
A macro, which can be used to define macros with arbitrary names, may

look as follows:

112

The Preprocessor

NOTES

Self-instructional Material

 DEFINE MACRO MACNAME

 MACNAME MACRO

 DB 'I am the macro &MACNAME.'

 ENDM

 ENDM

In order not to overload the example with "knowhow", the nested macro only

introduces itself kindly with a suitable character string in ROM. The call

 DEFINE Obiwan

would define the macro

 Obiwan MACRO

 DB 'I am the macro Obiwan.'

 ENDM

and the call

 DEFINE Skywalker

would define the following macro:

 Skywalker MACRO

 DB 'I am the macro Skywalker.'

 ENDM

12.7. CONDITIONAL COMPILATION

 Removing statements by hand would be quite tedious and could also

lead to error. For this reason, the preprocessor provides directives for

selectively removing section of code. This process is known as conditional

compilation.

#define RECORD–FILE

If the # ifdef directive tests whether a particular symbol has been

defined before the #ifdef is encountered. It does not matter what value has

been assigned to the symbol. In fact, a symbol can be defined to the

preprocessor without a value.

If the #ifdef directive is encountered after this definition it produce a

true result. If, however, the directive #undef RECORD–FILE is encountered

before the directive #ifdef RECORD–FILE then the preprocessor considers

the symbol RECORD–FILE to be undefined and the #ifdef directive returns

a false value.

If an #ifdef returns a true value, all the lines between the #ifdef and

the corresponding #endif directive are left in the program. If those lines

contain preprocessor directives, the directives are processed. In this way,

conditional compilation directives can be nested. If the #ifdef evaluates as

false, the associated lines are ignored, including any preprocessor directives

that are included.

The statements need not all be grouped in one place. The #ifdef and

#fendif directives can be used as many times as required. The preprocessor

also provides the directive #ifndef, which produces a true result if a symbol

is not defined. This makes it possible to use a single symbol to switch

between two versions.

Conditional compilation can be used to select preprocessor directives

as well as C code. For example suppose a header file is included in a

program. and a certain preprocessor symbol (say, FLAG) may or may not be

113

 Self-instructional Material

The Preprocessor

NOTES

defined in that header file. If the programmer wants FLAG never to be

defined, then the #include directive can be followed by

#ifdef FLAG

#undef FLAG

 #endif
This ensures that, even if the symbol is defined in the header file, its

definition is removed. It is not sufficient merely to work on

#undef FLAG

because if FLAG is not defined, the directive is erroneous. If FLAG

should always be defined, then we would write

#ifndef FLAG

#define FLAG

#endif
We could, of course, give FLAG a value. We cannot simply write

#define FLAG

Since if FLAG is already defined, an error probably will result.

THE #ELSE DIRECTIVE
This directive functions in much the same way as the else clause of

an if statement. All lines between an #ifdef or an #ifndef directive and the

corresponding # else clause are included if the #ifdef or #ifndef is true.

Otherwise, the lines between the #else and the corresponding #endif are

included.

The # else directive and the lines that follow it can be omitted, but

never the #endif directive. No other text can be included on the same line as

the #else or #endif directive.

THE # IF DIRECTIVE

The #if directive tests an expression. This expression can be of any

form used in a C program, with virtually any operators, except that it can

include only integer constant values No variables, or function calls are

permitted, nor are floating point, character or string constants. The #if

directive is true, if the expression evaluates to true (non–zero). Any

undefined preprocessor symbol used in the #if expression is treated as if it

has the value φ. Using a symbol that is defined with no value does not work

with all preprocessors, and an attempt to do so might result in an error.

12.8. LET US SUM UP

 In this unit, you have learnt about the preprocessor directive of C

language and macros of C language. This knowledge would make you

understand the file inclusion of preprocessor, macro definition, and nesting

of macros. Thus, the preprocessor unit would have brought you to closer to

know the concept of preprocessor directive and macros used in program

development.

12.9. UNIT – END QUESTIONS

1. Identify the use of preprocessor directive with example.

2. Discuss about the macros and its implementation

114

The Preprocessor

NOTES

Self-instructional Material

12.10. ANSWER TO CHECK YOUR PROGRESS

1. The preprocessor is a program that modifies the C source program according

to directives supplied in the program. An original source program usually is

stored in a file. The preprocessor does not modify this program file, but

creates a new file that contains the processed version of the program. This

new file is then submitted to the compiler. Some compilers enable the

programmer to run only the preprocessor on the source program and to view

the results of the preprocessor stage. All preprocessor directives begin with

the number or sharp sign (#). They must start in the first column, and no

space is required between the number sign and the directive. The directive is

terminated not by a semicolon, but by the end of the line on which it appears.

The C preprocessor is a collection of special statements called directives that

are executed at the beginning of the compilation process. The #include and #

define statements are preprocessor directives..

2. In Macro Substitution an identifier in a program is replaced by a pre defined string

composed of one or more tokens. We can use the #define directive for this

purpose. The definition should start with the keyword #define and should follow

by identifier and a token with at least one blank space between them. The token

may be any text and identifier must be a valid C name. The pre-processor replaces

every occurrence of the identifier in the source code by token. There are

different forms of macro substitution.

12.11. SUGGESTED READINGS

1. “Let Us C”, Yashavant Kanetkar, BPB Publications, Sixteenth Edition,

2017.

2. “Head First C: A Brain-Friendly Guide”, David Griffiths & Dawn Griffiths,

O’Reilly Publications, 2012.

3. “The C Programming Language”, Brain W. Kernighan / Dennis Ritchie,

Pearson Publications, 2015.

4. “C: The Complete Reference”, Herbert Schildt, McGraw Hill Publications,

Fourth Edition, 2017.

5. “C Primer Plus”, Stephen Prata, Addison-Wesley Professional, Sixth

Edition, 2013.

6. “Sams Teach Yourself C Programming in One Hour a Day”, Bradley L.

Jones, Sams Publishing, Seventh Edition, 2013.

7. “C-How to Program”, Paul Deitel & Harvey Deitel, Prentice-Hall

Publications, Seventh Edition, 2013.

8. “Programming with ANSI and Turbo C”, Ashok Kamthane, Pearson

Education India, 2006.

9. “C Programming Absolute Beginners Guide”, Greg Perry & Dean Miller,

Que Publishing, Third Edition, 2013.

10. “Programming in C”, Stephen G. Kochan, Addison-Wesley Professional,

Fourth Edition, 2014.

11. “Programming in ANSI C”, E. Balagurusamy, McGraw Hill Publications,

Eighth Edition, 2019.

12. “Let Us C”, Yashavant Kanetkar, BPB Publications, Sixteenth Edition,

2017.

115

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

UNIT XIII – DYNAMIC MEMORY

ALLOCATION AND LINKED LIST

Structure

13.1. Introduction

13.2. Objective

13.3. Dynamic Memory Allocation

13.3.1. Allocating Memory with malloc

13.3.2. Allocating Memory with calloc

13.3.3. Freeing Memory

13.3.4. Reallocating Memory Blocks

13.4. Pointer Safety

13.5. The Concept of Linked List

 13.5.1. Inserting a node by using Recursive Programs

 13.5.2. Sorting and Reversing a Linked List

 13.5.3. Deleting the Specified Node in a Singly Linked List

13.6. Let Us Sum Up

13.7. Unit – End Exercises

13.8. Answer to Check Your Progress

13.9. Suggested Readings

13.1. INTRODUCTION

Dynamic memory allocation is an aspect of allocating and freeing memory

according to your needs. Dynamic memory is managed and served with

pointers that point to the newly allocated space of memory in an area which

we call the heap. Now you can create and destroy an array of elements at

runtime without any problems. A linked list is a collection of objects linked

together by references from an object to another object. By convention these

objects are names as nodes. So the basic linked list, or commonly called

singly linked list consists of nodes where each node contains one or more

data fields AND a reference to the next node. The last node contains

a null reference to indicate the end of the list.

13.2. OBJECTIVES

After going through this lesson you will be able to

 Explain of dynamic memory allocation.

 Describe access to malloc(), calloc() & realloc().

 Define parameters of linked list.

 Explain singly linked list.

13.3. DYNAMIC MEMORY ALLOCATION

 Using array in programming, we allocate a fixed size for our

data. This size can't be increased or decreased while execution of the

http://www.programtopia.net/c-programming/docs/arrays

116

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

program. We can't change it even if the size allocated is more or less than our

requirement. This type of allocation of memory is called Static Memory

Allocation. This leads to wastage or shortage of memory.

 Dynamic memory allocation is an aspect of allocating and freeing

memory according to your needs. Dynamic memory is managed and served

with pointers that point to the newly allocated space of memory in an area

which we call the heap. Now you can create and destroy an array of

elements at runtime without any problems.

 C allows programmer to allocate memory dynamically i.e. during run

time and this process is called dynamic memory allocation. By allocating

memory dynamically, we can use only the amount of memory required for

us.

For this, C has four built in functions under "stdlib.h" header

files for allocating memory dynamically. They are:

 malloc()

 calloc()

 realloc()

 free()

malloc() : - Allocates the memory of requested size and returns the

pointer to the first byte

 of allocated space.

calloc() : - Allocates the space for elements of an array. Initializes the

elements to zero

 and returns a pointer to the memory.

realloc() : - It is used to modify the size of previously allocated

memory space.

free() : - Frees or empties the previously allocated memory space.

13.3.1. Allocating Memory with malloc

 The malloc() function stands for memory allocation. It is a function

which is used to allocate a block of memory dynamically. It reserves

memory space of specified size and returns the null pointer pointing to the

memory location. The pointer returned is usually of type void. It means that

we can assign malloc function to any pointer.

Syntax

 ptr = (cast_type*) malloc (byte_size);

Here,

 ptr is a pointer of cast_type.

 The malloc function returns a pointer to the allocated memory of

byte_size.

For example,

 Example: ptr = (int*) malloc (50);

When this statement is successfully executed, a memory space of 50

bytes is reserved. The address of the first byte of reserved space is assigned

to the pointer ptr of type int.

The malloc function allocates a memory block of size n bytes (size_t

is equivalent to an unsigned integer) The malloc function returns a pointer

(void*) to the block of memory. That void* pointer can be used for any

pointer type. malloc allocates a contiguous block of memory. If enough

117

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

contiguous memory is not available, then malloc returns NULL. Therefore

always check to make sure memory allocation was successful by using

void* p;

if ((p=malloc(n)) == NULL)

return 1;

else

{ /* memory is allocated */}

13.3.2. Allocating Memory with calloc

 The calloc function stands for contiguous allocation. This function is

used to allocate multiple blocks of memory. It is a dynamic memory

allocation function which is used to allocate the memory to complex data

structures such as arrays and structures.

Malloc function is used to allocate a single block of memory space

while the calloc function is used to allocate multiple blocks of memory

space. Each block allocated by the calloc function is of the same size.

Syntax,

 Ptr = (cast_type*) calloc (n, size)

 The above statement is used to allocate n memory blocks of the same

size.

 After the memory space is allocated, then all the bytes are initialized

to zero.

 The pointer which is currently at the first byte of the allocated

memory space is returned.

Whenever there is an error allocating memory space such as the shortage

of memory, then a null pointer is returned.

For example,

 void *calloc(size_t nmemb, size_t size);

allocates memory for an array of nmemb elements each of size and returns a

pointer to the allocated memory. Unlike malloc the memory is automatically

set to zero.

calloc(n, sizeof(int))

is equivalent to

malloc(n*sizeof(int))

except for the fact that calloc block is already initialized. Calloc is

appropriate when allocating a dynamic array of ints.

13.3.3. Freeing Memory

 The memory for variables is automatically deallocated at compile

time. In dynamic memory allocation, you have to deallocate memory

explicitly. If not done, you may encounter out of memory error.

The free() function is called to release/deallocate memory. Will cause the

program to give back the block to the heap (or free memory). The argument

to free is any address that was returned by a prior call to malloc. If free is

applied to a location that has been freed before, a double free memory error

may occur. We note that malloc returns a block of void* and therefore can be

assigned to any type.

double* A = (double*)malloc(n);

int* B = (int*)malloc(n);

char* C = (char*)malloc(n);

118

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

In each case however, the addresses A+i, B+i, C+i are calculated differently.

 A + i is calculated by adding 8i bytes to the address of A (assuming

sizeof(double) = 8)

 B + i is calculated by adding 4i bytes to the address of B

 C + i is calculated by adding i bytes to the address of C

calloc vs. malloc: Key Differences

The calloc function is generally more suitable and efficient than that

of the malloc function. While both the functions are used to allocate memory

space, calloc can allocate multiple blocks at a single time. You don't have to

request for a memory block every time. The calloc function is used in

complex data structures which require larger memory space.

The memory block allocated by a calloc function is always initialized

to zero while in malloc it always contains a garbage value.

13.3.4. Reallocating Memory Blocks

 Using the realloc() function, you can add more memory size to

already allocated memory. It expands the current block while leaving the

original content as it is. realloc stands for reallocation of memory. realloc can

also be used to reduce the size of the previously allocated memory.

Syntax

ptr = realloc (ptr, newsize)

The above statement allocates a new memory space with a specified

size in the variable newsize. After executing the function, the pointer will be

returned to the first byte of the memory block. The new size can be larger or

smaller than the previous memory. We cannot be sure that if the newly

allocated block will point to the same location as that of the previous

memory block. This function will copy all the previous data in the new

region. It makes sure that data will remain safe.

 realloc() changes the size of the memory block pointed to by ptr to

size bytes. The contents will be unchanged to the minimum of the old and

new sizes; newly allocated memory will be uninitialized. If ptr is NULL, the

call is equivalent to malloc(size); if size is equal to zero, the call is

equivalent to free(ptr). Unless ptr is NULL, it must have been returned by an

earlier call to malloc(), calloc() or realloc().

13.4. POINTER SAFETY

 Like arrays, Linked List is a linear data structure. Unlike arrays,

linked list elements are not stored at a contiguous location; the elements are

linked using pointers.

Figure 17: - Linked List

119

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

Static arrays are structures whose size is fixed at compile time and

therefore cannot be extended or reduced to fit the data set. A dynamic array

can be extended by doubling the size but there is overhead associated with

the operation of copying old data and freeing the memory associated with the

old data structure. One potential problem of using arrays for storing data is

that arrays require a contiguous block of memory which may not be

available, if the requested contiguous block is too large. However the

advantages of using arrays are that each element in the array can be accessed

very efficiently using an index. However, for applications that can be better

managed without using contiguous memory we define a concept called

“linked lists”.

A linked list is a collection of objects linked together by references

from one object to another object. By convention these objects are named as

nodes. So the basic linked list is collection of nodes where each node

contains one or more data fields AND a reference to the next node. The last

node points to a NULL reference to indicate the end of the list.

The entry point into a linked list is always the first or head of the list.

It should be noted that head is NOT a separate node, but a reference to the

first Node in the list. If the list is empty, then the head has the value NULL.

Unlike Arrays, nodes cannot be accessed by an index since memory

allocated for each individual node may not be contiguous. We must begin

from the head of the list and traverse the list sequentially to access the nodes

in the list. Insertions of new nodes and deletion of existing nodes are fairly

easy to handle and will be discussed in the next lesson. Recall that array

insertions or deletions may require adjustment of the array (overhead), but

insertions and deletions in linked lists can be performed very efficiently.

13.5. THE CONCEPT OF LINKED LIST

Why Linked List?

Arrays can be used to store linear data of similar types, but arrays

have the following limitations.

1) The size of the arrays is fixed: So we must know the upper limit on the

number of elements in advance. Also, generally, the allocated memory is

equal to the upper limit irrespective of the usage.

2) Inserting a new element in an array of elements is expensive because the

room has to be created for the new elements and to create room existing

elements have to be shifted.

For example, in a system, if we maintain a sorted list of IDs in an array id[].

id[] = [1000, 1010, 1050, 2000, 2040].

And if we want to insert a new ID 1005, then to maintain the sorted

order, we have to move all the elements after 1000 (excluding 1000).

Deletion is also expensive with arrays until unless some special

techniques are used. For example, to delete 1010 in id[], everything after

1010 has to be moved.

Advantages over arrays

1) Dynamic size

2) Ease of insertion/deletion

120

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

Drawbacks:

1) Random access is not allowed. We have to access elements sequentially

starting from the first node. So we cannot do binary search with linked lists

efficiently with its default implementation. 2) Extra memory space for a

pointer is required with each element of the list.

3) Not cache friendly. Since array elements are contiguous locations, there is

locality of reference which is not there in case of linked lists.

Representation:

A linked list is represented by a pointer to the first node of the linked

list. The first node is called the head. If the linked list is empty, then the

value of the head is NULL.

Each node in a list consists of at least two parts:

1) data

2) Pointer (Or Reference) to the next node.

In C, we can represent a node using structures. Below is an example

of a linked list node with integer data.

struct Node {

 int data;

 struct Node* next;

};

Linked List Traversal

In the previous program, we have created a simple linked list with

three nodes. Let us traverse the created list and print the data of each node

13.5.1. Inserting a node by using Recursive Programs

 There are three different possibilities for inserting a node into a

linked list. These three possibilities are:

1. Insertion at the beginning of the list.

2. Insertion at the end of the list

3. Inserting a new node except the above-mentioned positions.

Insertion at the beginning of the list: -

Step-1 : Get the value for NEW node to be added to the list and its position.

Step-2 : Create a NEW, empty node by calling malloc(). If malloc() returns

no error then go to

 or else say "Memory shortage".

Step-3 : insert the data value inside the NEW node's data field.

Step-4 : Add this NEW node at the desired position (pointed by the

"location") in the LIST.

Step-5 : Go to step-1 till you have more values to be added to the LIST.

In Link list We can Insert new Node at First position , at Last

position or in middle of the list at given position. Let’s assume that no. of

node in Link list is N

So we need three different Functions to insert node at different position.

Functions:

void addFront()

Function adds node to the first position in the list. Takes O(1)

constant time to set next of new node to head and head to new node.

Void addRear()

121

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

Function adds node to the last position in the list. Takes O(N) time

because we need to locate last node to insert. And in link list we don’t have

reference to last node so we need to traverse list.

Void addMiddle()

Function adds node after given node. Takes O(1) time , because we

have given reference to the node after which we have insert node. In this way

we can use Singly Link list, when number of node is not know priori.

But in Singly Link list, we can traverse List in only one direction. If

we want to insert node before given node(p) instead of after given node (as

we did in addMiddle() function) then it takes O(N) time to locate one

previous node of the node p because we need to traverse List up to previous

node of p.

13.5.2. Sorting and Reversing a Linked List

 Sorting a List is one of the common operations that are performed.

Sorting an array of object can easily be done using sorting algorithms like

bubble, insertion or quick sort. However, sorting a linked list is not that

trivial since linked list nodes cannot be randomly accessed. Only useful way

to sort a linked list is to remove a node from the old list and insert into a new

list in order. However for large lists, this is not very practical as insertion sort

requires O(n
2
) operations. An alternative method is to define

a toArray method for the linked list class that allows the linked list to be

converted to an array first and then apply a more efficient algorithm like

quick sort to sort. Once sorted the array can be converted into a linked list

again. This is still more efficient in theory as toArray, sorting using qsort,

constructing a linked list from an array takes O(n), O(n log n) and O(n)

operations respectively. Asymptotically this is still better than O(n
2
)

performance of a slow sort.

One of the useful operations that can be performed on linked lists is

to reverse a linked list. A naive algorithm for doing this is to remove the first

node of the list, insert to the beginning of a new list, then remove the second

node (which now has become first node) and insert to the beginning of the

new list etc. If the list has n nodes, then after performing n of these

operations, we would have reversed the list.

To sort a linked list, first we traverse the list searching for the node

with a minimum data value. Then we remove that node and append it to

another list which is initially empty. We repeat this process with the

remaining list until the list becomes empty, and at the end, we return a

pointer to the beginning of the list to which all the nodes are moved,.

Figure 18: Sorting of a linked list.

To reverse a list, we maintain a pointer each to the previous and the

next node, then we make the link field of the current node point to the

122

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

previous, make the previous equal to the current, and the current equal to the

next,.

Figure 19: A linked list showing the previous, current, and next nodes at

some point during reversal process.

Therefore, the code needed to reverse the list is

Prev = NULL;

While (curr != NULL)

{

 Next = curr->link;

 Curr -> link = prev;

 Prev = curr;

 Curr = next;

}

Program

include <stdio.h>

include <stdlib.h>

struct node

{

 int data;

 struct node *link;

};

struct node *insert(struct node *p, int n)

{

 struct node *temp;

 if(p==NULL)

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf("Error\n");

 exit(0);

 }

 p-> data = n;

 p-> link = NULL;

 }

 else

 {

 temp = p;

 while (temp-> link!= NULL)

 temp = temp-> link;

 temp-> link = (struct node *)malloc(sizeof(struct node));

 if(temp -> link == NULL)

 {

 printf("Error\n");

 exit(0);

 }

123

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

 temp = temp-> link;

 temp-> data = n;

 temp-> link = null;

 }

 return(p);

}

void printlist (struct node *p)

{

 printf("The data values in the list are\n");

 while (p!= NULL)

 {

 printf("%d\t",p-> data);

 p = p-> link;

 }

}

/* a function to sort reverse list */

struct node *reverse(struct node *p)

{

 struct node *prev, *curr;

 prev = NULL;

 curr = p;

 while (curr != NULL)

 {

 p = p-> link;

 curr-> link = prev;

 prev = curr;

 curr = p;

 }

 return(prev);

}

/* a function to sort a list */

struct node *sortlist(struct node *p)

{

 struct node *temp1,*temp2,*min,*prev,*q;

 q = NULL;

 while(p != NULL)

 {

 prev = NULL;

 min = temp1 = p;

 temp2 = p -> link;

 while (temp2 != NULL)

 {

 if(min -> data > temp2 -> data)

 {

 min = temp2;

 prev = temp1;

 }

 temp1 = temp2;

124

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

 temp2 = temp2-> link;

 }

 if(prev == NULL)

 p = min -> link;

 else

 prev -> link = min -> link;

 min -> link = NULL;

 if(q == NULL)

 q = min; /* moves the node with lowest data value in the list

pointed to by p to the list

 pointed to by q as a first node*/

 else

 {

 temp1 = q;

 /* traverses the list pointed to by q to get pointer to its

last node */

 while(temp1 -> link != NULL)

 temp1 = temp1 -> link;

 temp1 -> link = min; /* moves the node with lowest data

value

in the list pointed to

 by p to the list pointed to by q at the end of list pointed by

 q*/

 }

 }

 return (q);

}

void main()

{ int n;

 int x;

 struct node *start = NULL ;

 printf("Enter the nodes to be created \n");

 scanf("%d",&n);

 while (n- > 0)

 { printf("Enter the data values to be placed in a

node\n");

 scanf("%d",&x);

 start = insert (start,x);

 }

 printf("The created list is\n");

 printlist (start);

 start = sortlist(start);

 printf("The sorted list is\n");

 printlist (start);

 start = reverse(start);

 printf("The reversed list is\n");

 printlist (start); }

Explanation

The working of the sorting function

125

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

Figure 20: - Sorting of a linked list.

The working of a reverse function

Figure 21: - Reversal of a list.

13.5.3. Deleting the Specified Node in a Singly Linked List

 To delete a node from linked list, we need to do following steps.

1) Find previous node of the node to be deleted.

126

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

2) Change the next of previous node.

3) Free memory for the node to be deleted.

Figure 22: - Delete Node

Since every node of linked list is dynamically allocated using

malloc() in C, we need to call free() for freeing memory allocated for the

node to be deleted.

13.6. LET US SUM UP

 In this unit, you have learnt about the concept of dynamic memory

allocation and linked list of C language. This knowledge would make you

understand the dynamic memory allocation and its types and to understand

the concept of linked list and to know the implementation of linked list in C

language. Thus, the dynamic memory allocation and linked list unit would

have brought you to closer to know the concept of dynamic memory

allocation procedures and use of linked list.

13.7. UNIT – END QUESTIONS

1. How to allocate the memory using the concept of dynamic memory

allocation in C language? 2. Write about the functionality of linked

list.

13.8. ANSWER TO CHECK YOUR PROGRESS

1. Dynamic memory allocation is an aspect of allocating and freeing memory

according to your needs. Dynamic memory is managed and served with

pointers that point to the newly allocated space of memory in an area which

we call the heap. Now you can create and destroy an array of elements at

runtime without any problems. C allows programmer to allocate memory

dynamically i.e. during run time and this process is called dynamic memory

allocation. For this, C has four built in functions under "stdlib.h" header files for

allocating memory dynamically. They are:

1. malloc() 2. calloc() 3. realloc() 4.

free()

2. A linked list is a collection of objects linked together by references from one

object to another object. By convention these objects are named as nodes. So

the basic linked list is collection of nodes where each node contains one or

more data fields AND a reference to the next node. The last node points to a

NULL reference to indicate the end of the list.

http://www.cplusplus.com/reference/cstdlib/free/

127

Dynamic Memory

Allocation and Linked

List

NOTES

Self-instructional Material

To sort a linked list, first we traverse the list searching for the node

with a minimum data value. Then we remove that node and append it to

another list which is initially empty. We repeat this process with the

remaining list until the list becomes empty, and at the end, we return a

pointer to the beginning of the list to which all the nodes are moved

13.9. SUGGESTED READINGS

1. “Head First C: A Brain-Friendly Guide”, David Griffiths & Dawn Griffiths,

O’Reilly Publications, 2012.

2. “The C Programming Language”, Brain W. Kernighan / Dennis Ritchie,

Pearson Publications, 2015.

3. “C: The Complete Reference”, Herbert Schildt, McGraw Hill Publications,

Fourth Edition, 2017.

4. “C-How to Program”, Paul Deitel & Harvey Deitel, Prentice-Hall

Publications, Seventh Edition, 2013.

5. “Programming with ANSI and Turbo C”, Ashok Kamthane, Pearson

Education India, 2006.

6. “C Programming Absolute Beginners Guide”, Greg Perry & Dean Miller,

Que Publishing, Third Edition, 2013.

128

File Management

NOTES

Self-instructional Material

UNIT XIV – FILE MANAGEMENT

Structure

14.1. Introduction

14.2. Objective

14.3. Defining and Opening a file

14.4. Closing Files

14.5. Input / Output Operations on Files

14.6. Predefined Streams

14.7. Error Handling during I/O

14.8. Random Access to Files

14.9. Command Line Arguments

14.10. Let Us Sum Up

14.11. Unit – End Exercises

14.12. Answer to Check Your Progress

14.13. Suggested Readings

14.1. INTRODUCTION

Many applications require that information be written to or read from an

auxiliary storage device. Such information is stored on the storage device in

the form of data file. Thus, data files allow us to store information

permanently and to access later on and alter that information whenever

necessary. In C, a large number of library functions is available for creating

and processing data files. There are two different types of data files called

stream-oriented (or standard) data files and system oriented data files.

14.2. OBJECTIVES

After going through this lesson you will be able to

 Open and close a data file.

 Create a data file.

 Process a data file.

14.3. DEFINING AND OPENING A FILE

 A file represents a sequence of bytes on the disk where a group of

related data is stored. File is created for permanent storage of data. It is a

readymade structure.

We must open the file before we can write information to a file on a

disk or read it. Opening a file establishes a link between the program and the

operating system. The link between our program and the operating system is

a structure called FILE which has been defined in the header file “stdio.h”.

Therefore, it is always necessary to include this file when we do high level

disk I/O. When we use a command to open a file, it will return a pointer to

the structure FILE.

129

 Self-instructional Material

File Management

NOTES

 FILE *fopen(const char * filename, const char *

mode);

 Here, filename is a string literal, which you will use to name your

file, and access mode can have one of the following values –

r Opens an existing text file for reading purpose.

w Opens a text file for writing. If it does not exist, then a new file is

created. Here your program will start writing content from the beginning of

the file.

a Opens a text file for writing in appending mode. If it does not exist,

then a new file is created. Here your program will start appending content in

the existing file content.

r+ Opens a text file for both reading and writing.

w+ Opens a text file for both reading and writing. It first truncates the file

to zero length if it exists, otherwise creates a file if it does not exist.

a+ Opens a text file for both reading and writing. It creates the file if it

does not exist. The reading will start from the beginning but writing can only

be appended.

Therefore, the following declaration will be there before opening the file,

FILE *fp each file will have its own FILE structure. The FILE structure

contains information about the file being used, such as its current size, its

location in memory etc. Let us consider the following statements,

FILE *fp;

fp=fopen(“Sample.C,” “r”);
fp is a pointer variables, which contains the address of the structure

FILE which has been defined in the header file “stdio.h”. fopen() will oepn a

file “sample.c” in ‘read’ mode, which tells the C compiler that we would be

reading the contents of the file. Here, “r” is a string and not a character.

When fopen() is used to open a file then, it searches on the disk the

file to be opened. If the file is present, it loads the file from the disk into

memory. But if the file is absent, fopen() returns a NULL. It also sets up a

character pointer which points to the first character of the chunk of memory

where the file has been loaded.

Reading a file:

To read the file’s contents from memory there exists a function called

fgetc(). This is used as:

s=fgetc(fp);

fgetc() reads the character from current pointer position, advances the

pointer position so that it now points to the next character, and returns the

character that is read, which we collected in the variable s. This fgetc() is

used within an indefinite while loop, for end of file. End of file is signified

by a special character, whose ascii value is 26.

While reading from the file, when fgetc() encounters this Ascii

special character, instead of returning the characters that it has read, it returns

the macro EOF. The EOF macro has been defined in the file “stdio.h”.

14.4. CLOSING A FILE

 When we finished reading from the file, there is need to close it. This

is done using the function fclose() through the following statement:

fclose(fp);

130

File Management

NOTES

Self-instructional Material

This command deactivates the file and hence it can no longer be

accessed using getc(). ‘C’ provides many different file opening modes which

are as follows:

1. “r” Open the file for reading only.

2. “w” Open the file for writing only.

3. “a” Open the file for appending (or adding) data to it.

4. “r+” The existing file is opened to the beginning for both reading

and writing.

5. “w+” Same as "w" except both for reading and writing.

6. “a+” Same as "a" except both for reading and writing.

The fclose(-) function returns zero on success, or EOF if there is an

error in closing the file. This function actually flushes any data still pending

in the buffer to the file, closes the file, and releases any memory used for the

file. The EOF is a constant defined in the header file stdio.h.

There are various functions provided by C standard library to read and

write a file, character by character, or in the form of a fixed length string.

The fclose function takes a file pointer as an argument. The file

associated with the file pointer is then closed with the help of fclose function.

It returns 0 if close was successful and EOF (end of file) if there is an error

has occurred while file closing.

14.5. INPUT / OUTPUT OPERATIONS ON FILE

 The function fputc() writes the character value of the argument c to

the output stream referenced by fp. It returns the written character written on

success otherwise EOF if there is an error. You can use the following

functions to write a null-terminated string to a stream –

 int fputc(int c, FILE *fp);

The function fputs() writes the string s to the output stream

referenced by fp. It returns a non-negative value on success,

otherwise EOF is returned in case of any error. You can use int

fprintf(FILE *fp,const char *format, ...) function as well to write a string

into a file.

 int fputs(const char *s, FILE *fp);

The fgetc() function reads a character from the input file referenced

by fp. The return value is the character read, or in case of any error, it

returns EOF. The following function allows to read a string from a stream –

 int fgetc(FILE * fp);

The functions fgets() reads up to n-1 characters from the input stream

referenced by fp. It copies the read string into the buffer buf, appending

a null character to terminate the string.

If this function encounters a newline character '\n' or the end of the

file EOF before they have read the maximum number of characters, then it

returns only the characters read up to that point including the new line

character. You can also use int fscanf(FILE *fp, const char *format,

...) function to read strings from a file, but it stops reading after encountering

the first space character.

char *fgets(char *buf, int n, FILE *fp);

Let's see a little more in detail about what happened here.

First, fscanf() read just This because after that, it encountered a space,

131

 Self-instructional Material

File Management

NOTES

second call is for fgets() which reads the remaining line till it encountered

end of line. Finally, the last call fgets() reads the second line completely.

fprintf(file_pointer, str, variable_lists): It prints a string to the file

pointed to by file_pointer. The string can optionally include format specifiers

and a list of variables variable_lists.

fscanf(file_pointer, conversion_specifiers, variable_adresses): It is

used to parse and analyze data. It reads characters from the file and assigns

the input to a list of variable pointers variable_adresses using conversion

specifiers.
#include <stdio.h>

int main() {

 FILE * file_pointer;

 char buffer[30], c;

 file_pointer = fopen("fprintf_test.txt", "r");

 printf("----read a line----\n");

 fgets(buffer, 50, file_pointer);

 printf("%s\n", buffer);

 printf("----read and parse data----\n");

 file_pointer = fopen("fprintf_test.txt", "r"); //reset the

pointer

 char str1[10], str2[2], str3[20], str4[2];

 fscanf(file_pointer, "%s %s %s %s", str1, str2, str3,

str4);

 printf("Read String1 |%s|\n", str1);

 printf("Read String2 |%s|\n", str2);

 printf("Read String3 |%s|\n", str3);

 printf("Read String4 |%s|\n", str4);

 printf("----read the entire file----\n");

 file_pointer = fopen("fprintf_test.txt", "r"); //reset the

pointer

 while ((c = getc(file_pointer)) != EOF) printf("%c", c);

 fclose(file_pointer);

 return 0;

 }

1. In the above program, we have opened the file called

"fprintf_test.txt" which was previously written using fprintf() function, and it

contains "Learning C with Guru99" string. We read it using the fgets()

function which reads line by line where the buffer size must be enough to

handle the entire line.

2. We reopen the file to reset the pointer file to point at the beginning of

the file. Create various strings variables to handle each word separately. Print

the variables to see their contents. The fscanf() is mainly used to extract and

parse data from a file.

132

File Management

NOTES

Self-instructional Material

3. Reopen the file to reset the pointer file to point at the beginning of the

file. Read data and print it from the file character by character using getc()

function until the EOF statement is encountered

4. After performing a reading operation file using different variants, we

again closed the file using the fclose function.

14.6. PREDEFINED STREAMS

 When we say Input, it means to feed some data into a program. An

input can be given in the form of a file or from the command line. C

programming provides a set of built-in functions to read the given input and

feed it to the program as per requirement.

When we say Output, it means to display some data on screen,

printer, or in any file. C programming provides a set of built-in functions to

output the data on the computer screen as well as to save it in text or binary

files.

Besides the file pointers which we explicitly open by calling fopen,

there are also three predefined streams. stdin is a constant file pointer

corresponding to standard input, and stdout is a constant file pointer

corresponding to standard output. Both of these can be used anywhere a file

pointer is called for; for example, getchar() is the same

as getc(stdin) and putchar(c) is the same as putc(c, stdout). The third

predefined stream is stderr. Like stdout, stderr is typically connected to the

screen by default. The difference is that stderr is not redirected when the

standard output is redirected. For example, under Unix or MS-DOS, when

you invoke

 program > filename

anything printed to stdout is redirected to the file filename, but anything

printed to stderr still goes to the screen. The intent behind stderr is that it is

the ``standard error output''; error messages printed to it will not disappear

into an output file. For example, a more realistic way to print an error

message when a file can't be opened would be

 if((ifp = fopen(filename, "r")) == NULL)

 {

 fprintf(stderr, "can't open file %s\n", filename);

 exit or return

 }

where filename is a string variable indicating the file name to be opened. Not

only is the error message printed to stderr, but it is also more informative in

that it mentions the name of the file that couldn't be opened.

14.7. ERROR HANDLING DURING I/O

 As such, C programming does not provide direct support for error

handling but being a system programming language, it provides you access

at lower level in the form of return values. Most of the C or even Unix

function calls return -1 or NULL in case of any error and set an error

code errno. It is set as a global variable and indicates an error occurred

133

 Self-instructional Material

File Management

NOTES

during any function call. You can find various error codes defined in

<error.h> header file.

So a C programmer can check the returned values and can take

appropriate action depending on the return value. It is a good practice, to set

errno to 0 at the time of initializing a program. A value of 0 indicates that

there is no error in the program.

errno, perror(). and strerror()

The C programming language provides perror() and strerror() functions

which can be used to display the text message associated with errno.

 The perror() function displays the string you pass to it, followed by a

colon, a space, and then the textual representation of the current errno value.

 The strerror() function, which returns a pointer to the textual

representation of the current errno value.

Let's try to simulate an error condition and try to open a file which does not

exist. Here I'm using both the functions to show the usage, but you can use

one or more ways of printing your errors. Second important point to note is

that you should use stderr file stream to output all the errors.

#include <stdio.h>

#include <errno.h>

#include <string.h>

extern int errno ;

int main () {

 FILE * pf;

 int errnum;

 pf = fopen ("unexist.txt", "rb");

 if (pf == NULL) {

 errnum = errno;

 fprintf(stderr, "Value of errno: %d\n", errno);

 perror("Error printed by perror");

 fprintf(stderr, "Error opening file: %s\n", strerror(errnum));

 } else {

 fclose (pf);

 }

 return 0;

}

Divide by Zero Errors

It is a common problem that at the time of dividing any number,

programmers do not check if a divisor is zero and finally it creates a runtime

error.

Program Exit Status

It is a common practice to exit with a value of EXIT_SUCCESS in

case of program coming out after a successful operation. Here,

EXIT_SUCCESS is a macro and it is defined as 0.

If you have an error condition in your program and you are coming out then

you should exit with a status EXIT_FAILURE which is defined as -1.

134

File Management

NOTES

Self-instructional Material

14.8. RANDOM ACCESS TO FILES

 Random access means you can move to any part of a file and read or

write data from it without having to read through the entire file. Years ago,

data was stored on large reels of computer tape. The only way to get to a

point on the tape was by reading all the way through the tape. Then disks

came along and now you can read any part of a file directly.

Individual records of a random-access file are normally fixed in

length and may be accessed directly (and thus quickly) without searching

through other records.

This makes random-access files appropriate for:

 airline reservation systems

 banking systems

 point-of-sale systems

 Other kinds of transaction-processing systems that require rapid

access to specific data.

Figure 19: Random Access File Operation

 Fixed-length records enable data to be inserted in a random-access

file without destroying other data in the file. Data stored previously can also

be updated or deleted without rewriting the entire file.

Creating a Random-Access File

Functions fwrite and fread are capable of reading and writing arrays

of data to and from disk. The third argument of both fread and fwrite is the

number of elements in the array that should be read from or written to disk.

There is no need to read each record sequentially, if we want to access a

particular record.C supports these functions for random access file

processing.

1. fseek()

2. ftell()

3. rewind()

The rewind() function places the pointer to the beginning of the file,

irrespective of where it is present right now. The syntax is

rewind(fp);

Where fp is the file pointer.

Pointer movement is of utmost importance since fread() always reads that

record where the pointer is currently placed. Similarly , fwrite() always

writes the record where the pointer is currently placed.

The fseek() function move the pointer from one record to another. The

syntax is

fseek(fp,no-of-bytes, position);

Here, fp is the file pointer, no-of-bytes is the integer number that

indicates how many bytes you want to move & position is the position of the

135

 Self-instructional Material

File Management

NOTES

pointer from where you want to move e.g. it may be current position,

beginning of file position, & End of file position.

e.g. to move the pointer to the previous record from its current position, the

function is

fseek(fp, -recsize, SEEK-CUR);

Here no-of-bytes is stored in variable recsize which itself is a record size,

SEEK_CUR is a macro defined in “stdio.h”. Similarly SEEK_END,

SEEK_SET can be used for end of file and beginning of file respectively If

we wish to know where the pointer is positioned right now, we can use the

function ftell(). It returns this position as a long int which is an offset from

the beginning of the file. The value returned by ftell()can be used in

subsequent calls to fseek(). The sample call to ftell() is show below:

p=ftell(fp);

14.9. COMMAND LINE ARGUMENTS

 If any input value is passed through command prompt at the time of

running of program is known as command line argument. It is a concept to

passing the arguments to the main() function by using command prompt.

When Use Command Line Argument

When you need to developing an application for DOS operating system then

in that case command line arguments are used. DOS operating system is a

command interface operating system so by using command we execute the

program. With the help of command line arguments we can create our own

commands.

In Command line arguments application main() function will takes two

arguments that is;

 argc

 argv

argc : argc is an integer type variable and it holds total number of

arguments which is passed into main function. It take Number of arguments

in the command line including program name.

argv[] : argv[] is a char* type variable, which holds actual arguments which

is passed to main function.

Compile and run CMD programs

Command line arguments are not compile and run like normal C programs,

these programs are compile and run on command prompt. To Compile and

Link Command Line Program we need TCC Command.

First open command prompt.

Follow you directory where your code saved.

For compile -> C:/TC/BIN>TCC mycmd.c.

For run -> C:/TC/BIN>mycmd 10 20.

include <stdio.h>

int main(int argc, char *argv[]) {

 if(argc == 2) {

 printf("The argument supplied is %s\n", argv[1]);

 }

136

File Management

NOTES

Self-instructional Material

 else if(argc > 2) {

 printf("Too many arguments supplied.\n");

 }

 else {

 printf("One argument expected.\n");

 }

}

It should be noted that argv[0] holds the name of the program itself

and argv[1] is a pointer to the first command line argument supplied, and

*argv[n] is the last argument. If no arguments are supplied, argc will be one,

and if you pass one argument then argc is set at 2.

You pass all the command line arguments separated by a space, but if

argument itself has a space then you can pass such arguments by putting

them inside double quotes "" or single quotes ''. Let us re-write above

example once again where we will print program name and we also pass a

command line argument by putting inside double quotes −

 Command line arguments related programs are not execute directly

from TC IDE because arguments cannot be passed. To Edit the Command

Line Argument Program uses edit Command.

 Whenever the program is compiled and link we will get .exe file and that

.exe file itself is command.

 In above example program name is mycmd.c so executable file is

mycmd.exe and command name is mycmd.

 To load the application in to the memory we required to use program name

and command name.

Access data from outside of main

 argc and agrv are local variables to main function because those are the main

function parameters.

 According to the storage classes of C argc and argv are auto variable to main

function, so we can not extend the range of auto variable.

 By using argc and argv we can not access command from data outside of the

main function.

 In implementation when we required to access command from data outside

of the main function then use _argc, _argv variables.

 _argc and _argv are global variable which is declared in dos.h.

14.10. LET US SUM UP

 In this unit, you have learnt about the concept of file operations and

command line arguments of C language. This knowledge would make you

understand the file, file operations, file management functions and command

line arguments of C language. Thus, the file management unit would have

brought you to closer to know the concept of various file operations and

function of C language and also know the use of command line argument.

14.11. UNIT – END QUESTIONS

1. Define file? Explain about the file operations and functions of C language.

2. What is the use of command line argument.

137

 Self-instructional Material

File Management

NOTES

14.12. ANSWER TO CHECK YOUR PROGRESS

1. A file represents a sequence of bytes on the disk where a group of related

data is stored. File is created for permanent storage of data. It is a readymade

structure. To read the file’s contents from memory there exists a function

called fgetc(). When we finished reading from the file, there is need to close

it.
Random access means you can move to any part of a file and read or write

data from it without having to read through the entire file. Years ago, data

was stored on large reels of computer tape. The only way to get to a point on

the tape was by reading all the way through the tape. Then disks came along

and now you can read any part of a file directly.

Individual records of a random-access file are normally fixed in length and

may be accessed directly (and thus quickly) without searching through other

records.

2. If any input value is passed through command prompt at the time of running

of program is known as command line argument. It is a concept to passing

the arguments to the main() function by using command prompt. When you

need to developing an application for DOS operating system then in that case

command line arguments are used. DOS operating system is a command

interface operating system so by using command we execute the program.

With the help of command line arguments we can create our own commands.

In Command line arguments application main() function will takes two

arguments that is;

argc : argc is an integer type variable and it holds total number of

arguments which is passed into main function. It take Number of arguments

in the command line including program name.

 argv[] : argv[] is a char* type variable, which holds actual arguments which

is passed to main function.

14.13. SUGGESTED READINGS

1. “Programming in C”, Stephen G. Kochan, Addison-Wesley Professional,

Fourth Edition, 2014.

2. “Programming in ANSI C”, E. Balagurusamy, McGraw Hill Publications,

Eighth Edition, 2019.

3. “Let Us C”, Yashavant Kanetkar, BPB Publications, Sixteenth Edition,

2017.

4. “Head First C: A Brain-Friendly Guide”, David Griffiths & Dawn Griffiths,

O’Reilly Publications, 2012.

5. “The C Programming Language”, Brain W. Kernighan / Dennis Ritchie,

Pearson Publications, 2015.

6. “C: The Complete Reference”, Herbert Schildt, McGraw Hill Publications,

Fourth Edition, 2017.

138

 Self-instructional Material

Model question paper

NOTES

DISTANCE EDUCATION – CBCS – (2018-2019 Academic

Year Onwards)
Question Paper Pattern (ESE) – Theory

Programme: - B.Com (CA)

Subject: - DBMS

Time: - 3 Hours

Maximum: - 75 Marks

Part – A (10 X 2 = 20 Marks)

1. What is entity relationship model?

2. Expand DDL and DML.

3. Write the use of magnetic disk.

4. What is SQL?

5. What are the command uses in the transaction control?

6. What is called EQUI join?

7. Define normalization.

8. What is called external shorting?

9. What is mean by recursive relationship?

10. Define aggregative operation.

Part – B (5 X 5 = 25 Marks)

11. a) Write about database languages?

 (Or)

 b) Write about storage manager.

12. a) Briefly explain triggers in SQL?

 (Or)

 b) Write about database architecture?

13. a) Briefly explain about distributed systems.

 (Or)

 b) What is Weak entity set? Explain with an example

14. a) Write about transaction concept.

 (Or)

 b) What is the role of the DBA? Discuss.

15. a) How to remove transitive dependence.

 (Or)

 b) Write about lock-based protocols.

139

 Self-instructional Material

Model question paper

NOTES

Part – C (3 X 10 = 30 Marks)

16. Describe the structure of relational databases?

17. Discuss about triggers?

18. Discuss briefly about Entity-relationship model?

19. Explain Transaction isolation.

20. Explain briefly about Server system architectures?

